kotaro@math.titech.ac.jp

線形代数学第二B 講義資料 9

お知らせ

● 前回はお休みをいただきましたが,今回は提出物を受け付けます.前回の質問・訂正なども今回の用紙でお願いします.

前回の補足

対角化の問題の正解の例(固有値・固有ベクトルの順番を変えたり,固有ベクトルを0でないスカラ倍しても正解):

• 講義で扱った例題

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 1 & 1 \\ 3 & 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \end{bmatrix}; \qquad P = \begin{bmatrix} 1 & 1 & 2 - \sqrt{5} & 2 + \sqrt{5} \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -2 + \sqrt{5} & -2 - \sqrt{5} \\ -1 & 1 & 1 & 1 \end{bmatrix} \quad \textbf{EFSE} \quad P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 \\ 0 & 0 & 0 & -\sqrt{5} \end{bmatrix}.$$

● 問題 8-5:

$$A = \left[\begin{array}{ccccc} 1 & 1 & -2 & -1 \\ -3 & -9 & 8 & -5 \\ -4 & -11 & 9 & -7 \\ -1 & -1 & 0 & -1 \end{array} \right]; \qquad P = \left[\begin{array}{cccccc} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & -1 \\ 1 & 0 & 1 & 1 \end{array} \right] \quad \text{Form} \quad P = \left[\begin{array}{cccccc} -2 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 0 & -1 \\ 1 & 0 & 1 & 1 \end{array} \right].$$

● 問題 8-6 1 番目:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}; \quad P = \begin{bmatrix} & 1 & 1 & 1 - \sqrt{2} & 1 + \sqrt{2} \\ -1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 + \sqrt{2} & -1 - \sqrt{2} \\ -1 & 1 & -1 & -1 & -1 \end{bmatrix} \quad \text{EFSE} \quad P^{-1}AP = \begin{bmatrix} -2 & 0 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{2} & 0 \\ 0 & 0 & 0 & -2\sqrt{2} \end{bmatrix}.$$

● 問題 8-6 2 番目:

$$A = \left[\begin{array}{ccc} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{array} \right], \qquad P = \left[\begin{array}{ccc} -1 & -1 & 1 \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{array} \right] \quad \textbf{とすると} \quad P^{-1}AP = \left[\begin{array}{ccc} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

● 問題 8-6 3 番目 :

$$A = \left[\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right]; \qquad P = \left[\begin{array}{ccc} 1 & \frac{-1+i\sqrt{3}}{2} & \frac{-1-i\sqrt{3}}{2} \\ 1 & \frac{-1-i\sqrt{3}}{2} & \frac{-1+i\sqrt{3}}{2} \\ 1 & 1 & 1 \end{array} \right] \quad \textbf{LFSL} \quad P^{-1}AP = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & i\sqrt{3} & 0 \\ 0 & 0 & -i\sqrt{3} \end{array} \right]$$

● 問題 8-6 4 番目:

$$A = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}; \qquad P = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \quad \textbf{とすると} \quad P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

● 問題 8-6 5 番目:

$$A = egin{bmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{bmatrix}; \qquad P = egin{bmatrix} 1 & i \ -i & 1 \end{bmatrix}$$
 とすると $P^{-1}AP = egin{bmatrix} e^{i \theta} & 0 \ 0 & e^{-i heta} \end{bmatrix}$

9 三角化

ユニタリ行列 複素数を成分とする n 次正方行列 U がユニタリ行列 a unitary matrix であるとは, $U^*U=I$ が成り立つことである.ここで $U^*={}^t\overline{U}$ は U の随伴行列(共役転置行列)である.ユニタリ行列 U は正則で,その逆行列 $U^{-1}=U^*$ もまたユニタリである.また,ユニタリ行列の積はユニタリである.

いま \mathbb{C}^n の標準内積 $(x,y)={}^t\!x\overline{y}$ を考えると,正方行列 $U=[x_1,\ldots,x_n]$ $(x_j\in\mathbb{C}^n)$ がユニタリ行列であるための必要十分条件は $\{x_1,\ldots,x_n\}$ が正規直交系となること $((x_j,x_k)=\delta_{jk})$ である.

三角化 正方行列 $D=[d_{ij}]$ が上三角行列 an upper triangular matrix であるとは , i>j を満たす各添字 (i,j) に対して $d_{ij}=0$ が成り立つこと , すなわち "対角成分の下側の成分がすべて 0" となることである .

命題 9.1. 上三角行列の固有値は,その対角成分と重複度を含めて一致する.

証明: 上三角行列 D の対角成分を順に $\lambda_1,\ldots,\lambda_n$ とする.このとき $D-\lambda I$ はまた上三角行列で,その対角成分は $\lambda_1-\lambda,\ldots,\lambda_n-\lambda$ であるから,D の固有多項式は $f_D(\lambda)=\det(D-\lambda I)=(\lambda_1-\lambda)\ldots(\lambda_n-\lambda)$ となる.

定理 9.2. 任意の正方行列 A はユニタリ行列によって上三角化することができる.すなわち,ユニタリ行列 U をうまくとって $U^{-1}AU=D$ (D は上三角行列) とすることができる.

証明: 行列のサイズ n に関する数学的帰納法を用いる.1 次正方行列はつねに上三角であるから,n=1 の場合に結論は正しい.

いま,与えられた正の整数 $n\ge 2$ に対して,任意の n-1 次正方行列がユニタリ行列によって上三角化されてると仮定し,n 次正方行列 A がユニタリ行列で上三角化できることを示そう:行列 A の固有値を $\lambda_1,\ldots,\lambda_n$, $x_1\in\mathbb{C}^n$ を λ_1 に関する固有ベクトルとする.とくに $x_1\ne o$ なので,正規化して $||x_1||=1$ としておく.

いま,直交補空間 $W:=\langle x_1 \rangle^\perp$ を考えるとこれは \mathbb{C}^n の n-1 次元部分空間である *1 . そこで W の正規直交基底 *2 を $\{x_2,\dots,x_n\}$ とすると, $\{x_1,\dots,x_n\}$ は \mathbb{C}^n の正規直交基底となる(確かめよ).したがって, $P:=[x_1,\dots,x_n]$ とするとこれはユニタリ行列で, $P^{-1}AP=D$ とすると,AP=PD なので D の第一列 v は $Ax_1=Pv$ を満たす.ここで x_1 は A の固有値 λ_1 に関する固有ベクトルだから $v={}^tv_1,\dots,v_n$] と書けば

$$A\boldsymbol{x}_1 = \lambda_1 \boldsymbol{x}_1 = P\boldsymbol{v} = v_1 \boldsymbol{x}_1 + \dots + v_n \boldsymbol{x}_n.$$

したがって, $\{x_1,\ldots,x_n\}$ の一次独立性から $v_1=\lambda_1,\,v_2=\cdots=v_n=0$.すなわち $P^{-1}AP$ は次のように書ける:

$$P^{-1}AP = \left[egin{array}{ccc} \lambda_1 & * \cdots * \ 0 & & & \ dots & B & & \ & & \ & B & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ &$$

ここで,帰納法の仮定から, $Q'^{-1}BQ'$ が上三角行列となるような n-1 次ユニタリ行列 Q' が存在する.そこで

$$Q := \left[egin{array}{cccc} 1 & 0 \dots 0 \ 0 \ \vdots & Q' \ 0 \end{array}
ight]$$
 とすると $Q^{-1}P^{-1}APQ = \left[egin{array}{cccc} \lambda_1 & * \cdots * \ 0 \ \vdots & Q'^{-1}BQ' \ 0 \end{array}
ight]$ は上三角 .

ここで U := PQ とおけばこれはユニタリ行列で結論を満たす.

²⁰¹²年11月29日

 $^{^{*1}}$ 命題 6.15 . そこではスカラを $\mathbb R$ としているが $\mathbb C$ としても全く同様のことが成り立つ .

^{*2} 正規直交系の存在は定理 6.7.ここでも証明は実ベクトル空間に対して与えているが,複素ベクトル空間でも全く同様.

以下,三角化可能性の(理論的)応用をいくつかあげる:

正規行列の対角化可能性

定義 9.3. 正方行列 A が正規行列 a normal matrix であるとは , $A^*A = AA^*$ が成り立つことである .

例 9.4. ● 対角行列は正規行列である.

- ullet 行列 A が エルミート行列 , すなわち $A^*=A$ を満たすならば正規行列である.とくに , 実数を成分 とする対称行列は正規行列である.
- 行列 A が歪エルミート行列 (わいえるみーと) a skew hermitian matrix であるとは $A^* = -A$ が成り 立つことである.とくに実数を成分とする歪エルミート行列,すなわち ${}^tA = -A$ 満たす実行列を交代 行列 a skew symmetric matrix という.歪エルミート行列,(実) 交代行列は正規行列である.
- ullet ユニタリ行列は正規行列である.実際,ユニタリ行列 A 対して $A^*=A^{-1}$ だから $AA^*=A^*A=E$.

補題 9.5. 上三角行列が正規行列であるための必要十分条件は,それが対角行列となることである.

証明: 十分性は例 9.4 でみたので必要性を示す.n 次の上三角行列 $A=[a_{ij}]$ が正規行列であるとする.このとき AA^* と A^*A の (i,i) 成分を比較して,i>j のとき $a_{ij}=0$ であること(上三角)に注意すれば

$$\sum_{l=1}^n a_{il} \bar{a}_{il} = \sum_{l=1}^n a_{li} \bar{a}_{li} \qquad \text{fth} \qquad \sum_{l=i+1}^n a_{il} \bar{a}_{il} = \sum_{l=1}^{i-1} a_{li} \bar{a}_{li}$$

が成り立つことがわかる.式 (*) の i=1 の場合から

$$\sum_{l=2}^n a_{1l} ar{a}_{1l} = 0$$
 すなわち $a_{12} = a_{13} = \cdots = a_{1n} = 0$

を得る. さらに (*) の n=2 の場合から

$$\sum_{l=3}^n a_{2l} ar{a}_{2l} = \sum_{l=1}^1 a_{l2} ar{a}_{l2} = a_{12} ar{a}_{12} = 0$$
 すなわち $a_{23} = \cdots = a_{2n} = 0$.

これを繰り返して $a_{ij} = 0 \; (i < j)$ が得られるので A は対角行列 .

定理 9.6. 行列 A がユニタリ行列で対角化されるための必要十分条件は A が正規行列となることである .

証明: 必要性:ユニタリ行列 U で $U^{-1}AU=\Lambda$ (Λ は対角行列) となっているとする . U がユニタリだから $U^{-1}=U^*$ なので, $U^*AU=\Lambda$. この共役転置行列をとると $U^*A^*U=\Lambda^*$. ここで,対角行列 Λ が正規である ことから A が正規行列であることがわかる(確かめよ).

十分性:定理 9.2 より,ユニタリ行列 U で $U^*AU=D$ (D は上三角)となるものがとれる.ここで A は正規なので $DD^*=U^*AA^*U=U^*A^*AU=D^*D$ となり D は正規.したがって, 補題 9.5 から D は対角行列.

とくに,対称行列・エルミート行列の対角化は応用上重要なので,次回扱う.

固有空間とその次元 $\,\,\,\,$ 一般に n 次正方行列 A の固有値 λ に対して

$$(9.1) W_{\lambda} := \{ \boldsymbol{x} \in \mathbb{C}^n ; A\boldsymbol{x} = \lambda \boldsymbol{x} \}$$

は \mathbb{C}^n の部分空間である.実際 W_λ は行列 $A-\lambda I$ であらわされる \mathbb{C}^n の線形変換の核 kernel である (補題 4.1 . この W_λ を A の固有値 λ に対する固有空間 the eigenspace という .

行列 A の固有値 λ に関する固有ベクトルは W_λ の要素である.また W_λ の o でない要素は A の固有値 λ に関する固有ベクトルである.

補題 9.7. 行列 A と正則行列 P, Q に対して $\operatorname{rank} A = \operatorname{rank}(PAQ)$ が成り立つ .

証明: 行基本変形は正則行列を左からかけることと同じなので, $\operatorname{rank} A = \operatorname{rank}(PA)$.また A を (m,n)-型とするとき,線形写像 $F\colon\mathbb{C}^n\ni x\mapsto Ax\in\mathbb{C}^m$ の像 $\operatorname{Im} F$ の次元が $\operatorname{rank} A$ である(例 4.4)が,AQ が定める線形写像の像は $\operatorname{Im} F$ と一致するから(確かめよ) $\operatorname{rank} AQ = \operatorname{rank} A$.

定理 ${f 9.8}$. 正方行列 A の , 重複度 m をもつ固有値 λ に対する固有空間 W_{λ} の次元は 1 以上 m 以下である .

証明: 次元定理 4.6(例 4.4)から, $\dim W_{\lambda}=n-\mathrm{rank}(A-\lambda I)$ である.ただし A の次数を n とした.いま,A の固有値を $\{\lambda_1,\dots,\lambda_n\}$, λ_1 の重複度を m として $\lambda_1=\lambda_2=\dots=\lambda_m$ とし,定理 9.2 のように $U^{-1}AU=D$ (D は上三角行列で,その対角成分は順に $\lambda_1,\dots,\lambda_n$)としておく.ここで補題 9.7 から $\mathrm{rank}(A-\lambda_1 I)=\mathrm{rank}\,U^{-1}(A-\lambda I)U=\mathrm{rank}(D-\lambda I)$ であるが $D-\lambda I$ は上三角行列で,m+1 行目以下の 対角成分は 0 ではない.したがって $\mathrm{rank}(D-\lambda I)\geq n-m$ となり,結論が得られる.

ケイリー・ハミルトンの定理 一般に x の多項式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

と正方行列 A に対して

$$f(A) := a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I$$

と書く、

補題 9.9. 正方行列 A とスカラ λ , μ に対して $A-\lambda I$ と $A-\mu I$ は可換である:

$$(A - \lambda I)(A - \mu I) = (A - \mu I)(A - \lambda I).$$

定理 9.10 (Cayley-Hamilton). 正方行列 A の固有多項式を f_A とすると $f_A(A) = O$.

証明: 一般に,多項式 f と正則行列 U に対して $f(U^{-1}AU)=U^{-1}f(A)U$ なので定理 9.2 から,A が上三角行列である場合を示せば良い(確かめよ).

以下,上三角行列 D の対角成分を $\{\lambda_1,\dots,\lambda_n\}$ と表すと $f_D(\lambda)=(\lambda_1-\lambda)\dots(\lambda_n-\lambda)$ である(命題 9.1). したがって

$$f_D(D) = (-1)^n (D - \lambda_1 I) \dots (D - \lambda_n I)$$

であるが,補題 9.9 から右辺の積の順番は自由に入れ替えて良い.ここで $\{e_1,\dots,e_n\}$ を \mathbb{C}^n の標準基底とすると,D が上三角であることに気をつければ

$$(D-\lambda_1 I)e_1=\mathbf{o}, \qquad k\geq l$$
 のとき $(D-\lambda_k I)e_l\in\langle e_1,\ldots,e_{k-1}
angle$

が成り立つことがわかる.これを用いると

$$(D - \lambda_1 I)(D - \lambda_2 I) \dots (D - \lambda_k I) e_k = o$$

なので $f_D(D)e_k = o$ が各 k に対して成り立つ . したがって $f_D(D) = O$.

例 9.11. 2 次正方行列 A に対して $A^2 - (\operatorname{tr} A)A + (\operatorname{det} A)I = O$.

固有多項式の係数

補題 9.12. 次数 n の正方行列 A と正則行列 P に対して

$$\det(P^{-1}AP) = \det A, \qquad \operatorname{tr}(P^{-1}AP) = \operatorname{tr} A$$

が成り立つ.

定理 9.13. n 次正方行列 A の固有値を(重複しているものはその重複度だけ並べることにして) $\{\lambda_1,\dots,\lambda_n\}$ と書くと,

$$\det A = \lambda_1 \dots \lambda_n, \quad \operatorname{tr} A = \lambda_1 + \dots + \lambda_n$$

である.

証明: 補題 9.12 と定理 9.2 から,A が最初から上三角行列としてよい.上三角行列の行列式とトレースはそれぞれ対角成分の積と和であるが,命題 9.1 からそれらは全ての固有値の積と和である.

系 9.14. n 次正方行列 A の固有多項式を

$$f_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} a_{n-1} \lambda^{n-1} - \dots + a_2 \lambda^2 - a_1 \lambda + a_0$$

と書くと、

$$a_{n-1} = \operatorname{tr} A, \qquad a_0 = \det A$$

が成り立つ.

問題

- 9-1 \bullet ユニタリ行列 U の逆行列は U^{-1} で , これもまたユニタリであることを確かめなさい .
 - ユニタリ行列の積はユニタリ行列であることを確かめなさい.
 - ユニタリ行列の行列式の値は絶対値が 1 の複素数であることを示しなさい.
 - 正方行列 $U=[x_1,\ldots,x_n]$ $(x_j\in\mathbb{C}^n)$ がユニタリ行列であるための必要十分条件は $\{x_1,\ldots,x_n\}$ が \mathbb{C}^n の内積に関して正規直交系となること $((x_j,x_k)=\delta_{jk})$ であることを確かめなさい .
 - ullet 行列式が $e^{i heta}$ (heta は実数) であるような 2 次のユニタリ行列は

$$e^{\frac{i\theta}{2}} \begin{bmatrix} p & -\bar{q} \\ q & \bar{p} \end{bmatrix}$$
 $(p\bar{p} + q\bar{q} = 1)$

の形をしていることを確かめなさい.

- 9-2 n 次正方行列 A の固有値を $\{\lambda_1,\dots,\lambda_n\}$ とするとき, A^k (k は正の整数)の固有値は $\{(\lambda_1)^k,\dots,(\lambda_n)^k\}$ であることを示しなさい.(ヒント: $D:=U^{-1}AU$ を上三角行列としておくと, $D^k=U^{-1}A^kU$ は A^k と同じ固有多項式をもつ).
- 9-3 n 次正方行列 A の固有値を $\{\lambda_1,\dots,\lambda_n\}$ とする .x の多項式 p(x) に対して行列 p(A) の固有値は $\{p(\lambda_1),\dots,p(\lambda_n)\}$ であることを示しなさい .
- 9-4 n 次正方行列 A が , ある番号 k に対して $A^k=O$ を満たすとする .
 - \bullet A の固有値はすべて 0 であることを示しなさい .
 - $A^n = O$ であることを示しなさい . (固有多項式が λ^n となることと Cayley-Hamilton の定理)
- 9-5 2 次正方行列 A が $\det A=1, -2< \operatorname{tr} A<2$ を満たしているとする.このとき, $\operatorname{tr} A=2\cos\theta$ を満たす θ をとれば,任意の正の整数 m に対して

$$A^{m} = \frac{\sin m\theta}{\sin \theta} A - \frac{\sin(m-1)\theta}{\sin \theta} I$$

が成り立つことを示しなさい.

9-6 補題 9.12, 定理 9.13 を示しなさい.