4. チェイン・ルール

4.1 行列とベクトルの演算

2 変数 ,3 変数の関数を扱う際に必要なベクトル・行列 $^{1)}$ の演算をまとめておく、ここでは数 (スカラ) は実数とする .

数を n 個横に並べたものを n 次行ベクトル , 縦に並べたものを n 次列ベクトルという $^{2)}$, たとえば

$$(1,2),$$
 $\begin{pmatrix} 1\\2 \end{pmatrix},$ $(1,2,3),$ $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$

はそれぞれ2次行ベクトル,2次列ベクトル,3次行ベクトル,3次列ベクトルである.この講義では、ベクトルを通常列ベクトルの形に表し、一つの文字で表すときは、ローマ文字の太字を用いる:

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = {}^t(x_1, x_2), \qquad {}^tx = (x_1, x_2).$$

ここで $^t(*)$ は , 行 (列) ベクトルの各成分を縦 (横) に並べ直す操作 (転置) を表す $^{3)}$. 一方 , 第 3 回の (3.6) のように全微分は行ベクトルを用いて表す . 行ベクトルと列ベクトルの積を次のように定める (順番に注意):

$$(x_1, x_2)$$
 $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = x_1 y_1 + x_2 y_2, \quad (x_1, x_2, x_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3.$

高等学校で学んだベクトルの内積は $x\cdot y={}^t xy$ と表すことができる.

数を 2×2 (3×3) の正方形にならべたものを 2 次(3 次)正方行列という $^{4)}$. 以下簡単のために次数を 2 に限るが,3 次の場合も想像してほしい.ここでは,正方行列を表すのにローマ文字の大文字を用いる,行列 A を

第4回 (20150724) 38

$$(4.1) A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = (\boldsymbol{a}_1, \boldsymbol{a}_2) (\boldsymbol{a}_1 = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}, \boldsymbol{a}_2 = \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix})$$
$$= \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \begin{pmatrix} \alpha_1 = (a_{11}, a_{12}) \\ \alpha_2 = (a_{21}, a_{22}) \end{pmatrix}$$

と書くとき,第一行の右辺の式を行列 A の列ベクトルへの分解,第二行の式を行ベクトルへの分解という.

正方行列 A を (4.1) のように表すとき , これに列ベクトル x , 行ベクトル ξ を掛ける演算を次のように定義する :

$$A oldsymbol{x} = egin{pmatrix} lpha_1 oldsymbol{x} \\ lpha_2 oldsymbol{x} \end{pmatrix}, \qquad \xi A = (\xi oldsymbol{a}_1, \xi oldsymbol{a}_2).$$

これを用いて正方行列 A と B の積を次のように定める:

$$AB = \begin{pmatrix} \alpha_1 \mathbf{b}_1 & \alpha_1 \mathbf{b}_2 \\ \alpha_2 \mathbf{b}_1 & \alpha_2 \mathbf{b}_2 \end{pmatrix} \qquad \left(A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}, \ B = (\mathbf{b}_1, \mathbf{b}_2) \right).$$

正方行列と列ベクトルの積は列ベクトル, 行ベクトルと正方行列の積は行ベクトル, 正方行列と正方行列の積は正方行列である.

2次正方行列 A に対して

(4.2)
$$AA^{-1} = A^{-1}A = E \qquad \left(E := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$$

をみたす正方行列 A^{-1} が存在するとき,A は正則行列であるといい, A^{-1} を A の逆行列という.ここで E は 2 次の単位行列といい,次の性質を満たす $^{5)}$: 任意の 2 次列ベクトル x,2 次行ベクトル ξ , 2 次正方行列 A に対して

(4.3)
$$Ex = x, \qquad \xi E = \xi, \qquad EA = AE = A.$$

式 (4.1) の形の A に対して

$$\det A := a_{11}a_{22} - a_{12}a_{21}$$

で定まるスカラ $\det A$ を A の行列式とよぶ $^{6)}$. 行列 A が正則であるための必要十分条件は $\det A \neq 0$ であり,このとき, A^{-1} は次のように表される.

(4.5)
$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

^{*)2015}年7月3日/7日

¹⁾ベクトル: a vector, 英語の発音から "ヴェクタ" と読むべきな気がする. 行列: a matrix, matrices. 行列の一般論や詳細は「線形代数学第一」で扱う.

²⁾スカラ: a scalar; 行ベクトル: a row vector; 列ベクトル: a column vector.

³⁾ 転置: transposition.

⁴⁾ 正方行列: a square matrix.

⁵⁾正則行列: a regular matrix; 逆行列: the inverse matrix; 単位行列: the identity matrix.

⁶⁾ 行列式: determinant.

4.2 方向微分

ここでは 2 変数関数 f(x,y) を , ベクトル $x={}^t(x,y)$ に対して数 f(x)=f(x,y) を対応させる規則だと見なす f(x,y) で対応させる規則だと見なす f(x,y) で動く点の運動 f(x) を考えよう:

$$\gamma(t) = P + t\mathbf{v} = {}^{t}(a + v_1t, b + v_2t).$$

定義 4.1. 領域 $D\subset\mathbb{R}^2$ で定義された関数 f が , 点 $P=(a,b)\in D$ において ${m v}={}^t(v_1,v_2)$ 方向に方向微分可能であるとは , 1 変数関数

$$F(t) := f(a + v_1t, b + v_2t) = f(P + tv)$$

が t=0 で微分可能となることである.このとき,微分係数 F'(0) を f の P における v 方向の方向微分といい $^{8)}$,どんなベクトル v に対しても v 方向に方向微分可能なとき,f は P で方向微分可能という.

命題 3.23 から次がわかる:

命題 4.2. 領域 $D\subset\mathbb{R}^2$ 上の関数 f が $P=(a,b)\in D$ で微分可能ならば f は P で方向微分可能である.とくに v 方向の方向微分は次で与えられる:

$$(4.6) (df)_P \mathbf{v} = \frac{\partial f}{\partial x}(a,b)v_1 + \frac{\partial f}{\partial y}(a,b)v_2 (\mathbf{v} = {}^t(v_1,v_2)).$$

勾配ベクトル 点 P を含む領域で定義された微分可能な関数 f に対して

$$\operatorname{grad} f_P := \begin{pmatrix} f_x(a,b) \\ f_y(a,b) \end{pmatrix} = {}^t ((df)_P)$$

で定まるベクトルを f の P における勾配ベクトルという $^{9)}$. これを用いると , 方向微分 (4.6) は内積 "·" を用いて

$$(df)_P \mathbf{v} = (\operatorname{grad} f_P) \cdot \mathbf{v}$$

と表すことができる. 勾配ベクトル $\operatorname{grad} f_P$ が零ベクトルでないとき,このベクトルは P を通る f の等高線に垂直な方向を与えている(問題 4-4).

第 4 回 (20150724) 40

4.3 合成関数の微分 (チェイン・ルール)

曲線に沿う微分の公式(命題 3.23)と偏微分の意味から直ちに次のことがわかる:

定理 4.3 (チェイン・ルール 10). 2 変数関数 f(x,y) と , 2 つの 2 変数関数

$$x = x(\xi, \eta), \qquad y = y(\xi, \eta)$$

がともに微分可能であるとき 11), 2 変数関数

$$\tilde{f}(\xi,\eta) = f(x(\xi,\eta), y(\xi,\eta))$$

は微分可能で,次が成り立つ:

$$\frac{\partial \tilde{f}}{\partial \xi}(\xi, \eta) = \frac{\partial f}{\partial x} (x(\xi, \eta), y(\xi, \eta)) \frac{\partial x}{\partial \xi}(\xi, \eta) + \frac{\partial f}{\partial y} (x(\xi, \eta), y(\xi, \eta)) \frac{\partial y}{\partial \xi}(\xi, \eta)$$
$$\frac{\partial \tilde{f}}{\partial y}(\xi, \eta) = \frac{\partial f}{\partial x} (x(\xi, \eta), y(\xi, \eta)) \frac{\partial x}{\partial y}(\xi, \eta) + \frac{\partial f}{\partial y} (x(\xi, \eta), y(\xi, \eta)) \frac{\partial y}{\partial y}(\xi, \eta).$$

注意 $\bf 4.4.$ 物理学や工学では,定理 $\bf 4.3$ の $\tilde{f}(\xi,\eta)$ のことを f(x,y) と同じ f を用いて $f(\xi,\eta)$ のように表すことがある.文脈で独立変数がはっきりわかる のならこの記法が便利である.このとき(適当に省略して)定理 $\bf 4.3$ の結論を

$$\frac{\partial f}{\partial \xi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \xi}, \qquad \frac{\partial f}{\partial \eta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \eta}$$

と表すことができる.さらに,従属変数に名前をつけて

$$z = f(x, y) = f(x(\xi, \eta), y(\xi, \eta)) = \tilde{f}(\xi, \eta)$$

と表して次のように書くこともできる:

$$\frac{\partial z}{\partial \xi} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \xi}, \qquad \frac{\partial z}{\partial \eta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \eta}.$$

 \mathbb{R}^2 から \mathbb{R}^2 への写像とその微分 領域 $D\subset\mathbb{R}^2$ 上で定義された写像 $F\colon D\to\mathbb{R}^2$ を考える.これは D の各点 (x,y) に対して \mathbb{R}^2 の要素 F(x,y) を対応させる対応の規則である.F(x,y) は \mathbb{R}^2 の要素だから,それを (ξ,η) と書けば,各 ξ,η は (x,y) の関数だから,写像 $F\colon\mathbb{R}^2\supset D\to\mathbb{R}^2$ とは領域

⁷⁾関数の定義域の点の座標は行べクトルで表したが、これからしばらくの間は列ベクトルで表すことにする。

⁸⁾方向微分: the directional derivative.

⁹⁾ 勾配ベクトル: the gradient vector.

¹⁰⁾チェイン・ルール: the chain rule.

 $^{^{(11)}\}xi$: xi; η : eta. ギリシア文字 ξ , η , ζ (zeta) はしばしばローマ文字 (x,y,z) の対応物として使われる.

 $D \subset \mathbb{R}^2$ 上で定義された 2 個の関数の組とみなすことができる:

$$(4.7) F: \mathbb{R}^2 \supset D \ni (x,y) \longmapsto \big(\xi(x,y),\eta(x,y)\big) \in \mathbb{R}^2.$$

このとき , 2 つの 2 変数関数 $\xi(x,y)$, $\eta(x,y)$ を F の成分とよぶ $^{12)}$. 式が長くなるのを避けるために , ベクトル記法を用いて

$$\boldsymbol{\xi} = F(\boldsymbol{x})$$
 $(\boldsymbol{\xi} = (\xi, \eta), \ \boldsymbol{x} = (x, y))$

などと書くことがある.写像 $F=(\xi,\eta)\colon\mathbb{R}^2\supset D\to\mathbb{R}^2$ が C^k -級 であるとは $^{13)}$,各成分 ξ,η が C^k -級 (26 ページ)となることである.

定義 4.5. 領域 $D \subset \mathbb{R}^2$ 上の C^1 -級写像 $F = (\xi, \eta) \colon D \to \mathbb{R}^n$ に対して

$$dF = \begin{pmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\ \frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y} \end{pmatrix} = \begin{pmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{pmatrix}$$

で与えられる 2 次正方行列を F の微分またはヤコビ行列 という $^{14)}$.

合成写像・逆写像とその微分 領域 $D,~U\subset\mathbb{R}^2$ 上で定義された写像 $F\colon D\to\mathbb{R}^2$, $G\colon U\to\mathbb{R}^2$ が , 任意の ${m x}=(x,y)\in D$ に対して $F({m x})\in U$ をみたすとき ,

$$G \circ F \colon \mathbb{R}^2 \supset D \ni \boldsymbol{x} \longmapsto G(F(\boldsymbol{x})) \in \mathbb{R}^2$$

で与えられる写像 $G\circ F\colon\mathbb{R}^2\supset D\to\mathbb{R}^2$ を F と G の合成写像 $^{15)}$ という.

命題 4.6. 上の状況で F.G がともに C^1 -級ならば

$$d(G \circ F) = dG dF$$
, すなわち $d(G \circ F)(\boldsymbol{x}) = dG(F(\boldsymbol{x})) dF(\boldsymbol{x})$

が成り立つ、ただし右辺の積は行列の積を表す、

領域 $D\subset\mathbb{R}^2$ の各点 x に対してそれ自身を対応させる写像

$$id_D : D \ni \boldsymbol{x} \longmapsto id_D(\boldsymbol{x}) = \boldsymbol{x} \in D$$

を D 上の恒等写像 $^{16)}$ という . 領域 $D\subset\mathbb{R}^2$ から $U\subset\mathbb{R}^2$ への写像 $F\colon D\to$

第 4 回 (20150724) 42

U に対して, $G\circ F=\mathrm{id}_D$, $F\circ G=\mathrm{id}_U$ をみたす写像 $G\colon U\to D$ が存在するとき,G を F の逆写像といい, $G=F^{-1}$ と書く $^{17)}$.

例 4.7. 領域

$$D = \left\{ (r,\theta) \in \mathbb{R}^2 \,|\, r > 0, -\frac{\pi}{2} < \theta < \frac{\pi}{2} \right\}, \quad U = \left\{ (x,y) \in \mathbb{R}^2 \,|\, x > 0 \right\}$$
 に対して

$$F: D \ni (r,\theta) \longmapsto F(r,\theta) = (r\cos\theta, r\sin\theta) \in U,$$

$$G: U \ni (x,y) \longmapsto G(x,y) = \left(\sqrt{x^2 + y^2}, \tan^{-1}\frac{y}{x}\right) \in D$$

とすると $G=F^{-1}, F=G^{-1}$ である . 実際, $(r,\theta)\in D$ に対して $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ なので $\tan^{-1}\tan\theta=\theta$ (定義 1.6 参照) だから , r>0 に注意すれば

$$G \circ F(r,\theta) = G(r\cos\theta, r\sin\theta) = \left(\sqrt{r^2\cos^2\theta + r^2\sin^2\theta}, \tan^{-1}\frac{r\sin\theta}{r\cos\theta}\right)$$
$$= (r, \tan^{-1}\tan\theta) = (r, \theta) = \mathrm{id}_D(r, \theta).$$

一方, $\theta=\tan^{-1}(y/x)$ とすると,逆正接関数の定義から $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$ だから $\cos\theta>0$.したがって,x>0 に注意して

$$\cos \tan^{-1} \frac{y}{x} = \cos \theta = \frac{1}{\sqrt{1 + \tan^2 \theta}} = \frac{1}{\sqrt{1 + \tan^2 \tan^{-1} \frac{y}{x}}} = \frac{1}{\sqrt{1 + \frac{y^2}{x^2}}}$$
$$= \frac{|x|}{\sqrt{x^2 + y^2}} = \frac{x}{\sqrt{x^2 + y^2}},$$

$$\sin \tan^{-1} \frac{y}{x} = \sin \theta = \cos \theta \tan \theta = \frac{x}{\sqrt{x^2 + y^2}} \frac{y}{x} = \frac{y}{\sqrt{x^2 + y^2}}.$$

これらから
$$F \circ G(x,y) = F\left(\sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x}\right) = (x,y) = \mathrm{id}_U(x,y)$$
. \diamondsuit

注意 4.8. 座標平面上の点 (x,y) に対して例 4.7 のように $(r,\theta)=G(x,y)$ と 定めるとき, (r,θ) を座標平面の極座標という.これに対して,(x,y) を直交 座標系 あるいは デカルト座標系という $^{18)}$.

¹²⁾写像: a map;成分: components.

 $^{^{13)}}$ 本来なら微分可能性から定義していくべきだが,簡単のため C^k -級の概念だけを定義しておく.こういうもののみを考えていても実用上はほとんど問題がない.

⁻¹⁴⁾微分: the differential; ヤコビ行列: the Jacobian matrix; ヤコビ: Jacobi, Carl Gustav Jacob (1804–1851, D).

¹⁵⁾ 合成: the composition.

 $^{^{16)}}$ 恒等写像 : the identity map ; 定義域 D が文脈より自明な場合は , id_D を単に id と書く場合がある .

 $^{^{17}}$ 逆写像: the inverse map; F^{-1} : the inverse of F/F-inverse;

¹⁸⁾ 極座標: the polar coordinate system; 直交座標系: the orthognonal coordinate system; デカルト座標系: the Cartesian coordinate system; デカルト:: Descartes, René (Renatus Cartesius; 1596–1650).

例 4.7 の表示では,(x,y) 平面の右半分しか極座標で表示できないが,通常は次のように平面のほぼ全体を表せるように拡張する:領域

$$\widetilde{D}=\left\{(r,\theta)\,|\,r>0,-\pi<\theta<\pi\right\},\quad \widetilde{U}=\left\{(x,y)\,|\,y\neq0\text{ または }x>0\right\}$$
を考え、 $h\colon\widetilde{U}\to\mathbb{R}$ を

$$h(x,y) := \begin{cases} \tan^{-1}\frac{y}{x} & (x>0) \\ -\tan^{-1}\frac{x}{y} + \frac{\pi}{2} & (x \le 0, y > 0) \\ -\tan^{-1}\frac{x}{y} - \frac{\pi}{2} & (x \le 0, y < 0) \end{cases}$$

と定め¹⁹⁾,

$$\widetilde{F} \colon \widetilde{D} \ni (r,\theta) \longmapsto \widetilde{F}(r,\theta) = (r\cos\theta, r\sin\theta) \in \widetilde{U},$$

$$\widetilde{G} \colon \widetilde{U} \ni (x,y) \longmapsto \widetilde{G}(x,y) = \left(\sqrt{x^2 + y^2}, h(x,y)\right) \in \widetilde{D}$$

とおけば $\widetilde{F}=\widetilde{G}^{-1},\ \widetilde{G}=\widetilde{F}^{-1}$ となる.座標平面上の点 (x,y) に対応する $(r,\theta)=\widetilde{G}(x,y)$ を (x,y) の極座標という.

命題 4.9. 写像 $F\colon\mathbb{R}^2\supset D\to U\subset\mathbb{R}^2$ が逆写像 $G=F^{-1}$ をもち,F, F^{-1} ともに C^1 -級ならば,

が成り立つ.ただし右辺の "-1" は 正方行列の逆行列を表す.

証明.恒等写像の微分が単位行列 E となることに注意して, $F^{-1}\circ F=\mathrm{id}_D$ に命題 4.6 を適用すれば $dF^{-1}dF=E$,また $F\circ F^{-1}=\mathrm{id}_U$ に命題 4.6 を適用すれば $dFdF^{-1}=E$. したがって dF^{-1} は dF の逆行列である.

变数变换

例 4.10 (平面極座標とラプラシアン). 例 4.7 の状況を考える:

(4.8)
$$x = x(r, \theta) = r \cos \theta, \qquad y = y(r, \theta) = r \sin \theta.$$

このとき $F:(r,\theta)\mapsto(x,y)$ の微分(定義 4.5) は

(4.9)
$$dF = \begin{pmatrix} x_r & x_\theta \\ y_r & y_\theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix},$$

第4回 (20150724) 44

だから , その逆写像 $G=F^{-1}$ の微分は , 命題 4.9 と逆行列の公式 (4.5) から

(4.10)
$$dG = \begin{pmatrix} r_x & r_y \\ \theta_x & \theta_y \end{pmatrix} = (dF)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\frac{1}{r} \sin \theta & \frac{1}{r} \cos \theta \end{pmatrix}$$

となる. したがって

(4.11)
$$\frac{\partial}{\partial x} = \cos\theta \frac{\partial}{\partial r} - \frac{1}{r}\sin\theta \frac{\partial}{\partial \theta}, \qquad \frac{\partial}{\partial y} = \sin\theta \frac{\partial}{\partial r} + \frac{1}{r}\cos\theta \frac{\partial}{\partial \theta}.$$

平面上の C^2 -級関数 f(x,y) に対して

(4.12)
$$\Delta z = \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

を対応させる Δ をラプラス作用素またはラプラシアンという (\emptyset 2.10) . いま , f(x,y) を (4.8) によって (r,θ) の関数とみなしたとき , Δf を f の r,θ に関する偏導関数を用いて表そう . 式 (4.11) を用いれば

$$\frac{\partial^2 f}{\partial x^2} = \cos^2 \theta f_{rr} - \frac{2}{r} \cos \theta \sin \theta f_{r\theta} + \frac{1}{r^2} \sin^2 \theta f_{\theta\theta} + \frac{1}{r} \sin^2 \theta f_r + \frac{2}{r^2} \sin \theta \cos \theta f_{\theta}$$
$$\frac{\partial^2 f}{\partial y^2} = \sin^2 \theta f_{rr} + \frac{2}{r} \cos \theta \sin \theta f_{r\theta} + \frac{1}{r^2} \cos^2 \theta f_{\theta\theta} + \frac{1}{r} \cos^2 \theta f_r - \frac{2}{r^2} \sin \theta \cos \theta f_{\theta}$$

なので、次を得る、

(4.13)
$$\Delta f = f_{xx} + f_{yy} = f_{rr} + \frac{1}{r} f_r + \frac{1}{r^2} f_{\theta\theta}. \quad \diamondsuit$$

4.4 陰関数

領域 $D \subset \mathbb{R}^2$ 上で定義された 2 変数関数 F(x,y) に対して,式 F(x,y)=0 は x と y の関係式である.これを"y について解く"ことができたとしよう:

$$F(x,y) = 0 \iff y = \varphi(x).$$

このとき , 関係式 F(x,y)=0 は関数 $y=\varphi(x)$ を暗に表しているので , $y=\varphi(x)$ の陰関数 $^{20)}$ 表示という .

例 4.11. (1) F(x,y)=2x-3y+5 とすると , F(x,y)=0 は $y=\frac{1}{3}(2x+5)$ と書ける . また , 同じ式は $x=\frac{1}{2}(3y-5)$ とも書ける .

(2) $F(x,y) = x^2 + y^2 - 1$ とおくと, 関係式 F(x,y) = 0 は y について解

 $^{^{19)}}h(x,y)$ は原点 (0,0) と点 (x,y) を結ぶ平面上の有向線分が x 軸の正の部分と成す角を表している.この関数は , たとえば C や Fortran などでは tan2(x,y) という関数として実装されている.

²⁰⁾陰関数: an implicit function.

けない.しかし,F の定義域を $U:=\{(x,y)\in\mathbb{R}^2\,|\,y>0\}$ に限ると $(x,y)\in U$ かつ F(x,y)=0 \Leftrightarrow $y=\sqrt{1-x^2}$ (-1< x<1) と,y は x の関数とみなせる.同様に定義域を $U':=\{(x,y)\in\mathbb{R}^2\,|\,y<0\}$ に限れば,関係式は関数 $y=-\sqrt{1-x^2}$ を与える.また,定義域を $\{(x,y)|x>0\}$ とすれば,F(x,y)=0 は $x=\sqrt{1-y^2}$ と書ける. \diamondsuit

陰関数定理 一般に f(x,y)=0 が y についてとけるか否かを判定するのは難しいが,次の十分条件が知られている:

定理 $\bf 4.12$ (陰関数定理の特別な場合).領域 $D\subset \mathbb{R}^2$ 上の C^k -級関数 $F\colon D\to \mathbb{R}$ と $F(x_0,y_0)=0$ をみたす点 $(x_0,y_0)\in D$ をとる.もし, $F_y(x_0,y_0)\neq 0$ が成り立っているならば,P を含む領域 $U\subset D$ と, \mathbb{R} のある開区間 I 上で定義された C^k -級の 1 変数関数 $\varphi\colon I\to \mathbb{R}$ で次をみたすものが存在する:

 $(x,y)\in U$ かつ F(x,y)=0 \Leftrightarrow $x\in I$ かつ $y=\varphi(x)$. とくに各 $x\in I$ に対して $F(x,\varphi(x))=0$ が成立する.

定理の結論は,P の十分近くで,F(x,y)=0 が y について解けることを表している.また,定理 4.12 で変数 x と y の役割を取り替えれば, $F_x(P)\neq 0$ ならば P の近くで F(x,y)=0 は x について解けることもわかる.

変数の個数が多いときも同様の性質が成り立つ.

例 4.13. \mathbb{R}^3 で定義された 3 変数関数 $F(x,y,z):=x^2+y^2+z^2-1$ は C^∞ -級である.点 P=(0,0,1) は F(P)=0 をみたしているが,さらにまた $F_z(P)=2\neq 0$ が成り立つ.このとき, $U:=\{(x,y,z)\in\mathbb{R}^3\,|\, z>0\}$, $V:=\{(x,y)\in\mathbb{R}^2\,|\, x^2+y^2<1\}$ とすると,

F(x,y,z)=0 かつ $(x,y,z)\in U\Leftrightarrow z=\sqrt{1-x^2-y^2}$ かつ $(x,y)\in V$ となる.すなわち F(x,y,z)=0 は z について解ける.集合 $\{(x,y,z)\in\mathbb{R}^3\,|\,F(x,y,z)=0\}$ は \mathbb{R}^3 の原点を中心とする半径 1 の球面だが,関係式を z について解いて,"北半球"のグラフ表示が得られたことになる z^{21} .

第4回 (20150724) 46

なめらかな曲線 領域 $D\subset\mathbb{R}^2$ 上の C^∞ -級関数 F に対して,集合 $C=\{(x,y)\in D\,|\, F(x,y)=0\}$ を考える.点 $P\in C$ に対して,P を含む \mathbb{R}^2 の領域 U をうまくとれば,共通部分 $C\cap U$ が C^∞ -級関数のグラフと合同となるとき,C は P の近くでなめらかな曲線 22 であるということにする.各点の近くでなめらかな曲線であるとき C を単になめらかな曲線であるという.例 $\mathbf{4.14.}$ $C=\{(x,y)\in\mathbb{R}^2\,|\, x^2+y^2=1\}$ は原点を中心とする半径 1 の円 23 となるが,これはなめらかな曲線である.実際,点 $P\in C$ は

$$U_1 := \{(x,y) | y > 0\},$$
 $U_2 := \{(x,y) | y < 0\},$
 $U_3 := \{(x,y) | x > 0\},$ $U_4 := \{(x,y) | x < 0\}$

のいずれかの要素となるが,各 j=1,2,3,4 に対して $C\cap U_j$ は C^∞ -級関数 $\sqrt{1-x^2}$ (-1< x<1) のグラフと合同である.

定理 4.12 から次がすぐにわかる:

命題 4.15. 領域 $D\subset\mathbb{R}^2$ 上で定義された C^∞ -級関数 F に対して $C:=\{(x,y)\in D\,|\, F(x,y)=0\}$ とおく . 各 $P\in C$ で $(dF)_P\neq (0,0)$ ならば C はなめらかな曲線である .

例 4.16. 関数
$$F(x,y) := 2(x^2 - y^2) - (x^2 + y^2)^2$$
 に対して

$$dF_{(x,y)} = (4x(1-x^2-y^2), -4y(1+x^2+y^2))$$

だから $dF_{(x,y)}=(0,0)$ となるのは $(x,y)=(0,0),\,(1,0),\,(-1,0)$ のときのみである.とくに $F(\pm 1,0)\neq 0$, F(0,0)=0 なので, $C=\{(x,y)\,|\,F(x,y)=0\}$ は (0,0) の近くをのぞいてなめらかな曲線である.この曲線はレムニスケート 24 とよばれる(問題 $^{4-9}$ の $^{a}=0$ の場合).

陰関数の微分法

命題 **4.17.** 定理 4.12 の状況で F(x,y)=0 が $y=\varphi(x)$ の陰関数表示となっているとき,次が成り立つ:

$$\frac{d\varphi(x)}{dx} = -\frac{\partial F}{\partial x}(x,y) / \frac{\partial F}{\partial y}(x,y) \qquad (y = \varphi(x)).$$

 $^{^{21)}}$ 球面 : a sphere; これは球の表面を表す . 中身の詰まった球は , 単に球 a ball , あるいは球体という . 北半球 : the Northern Hemisphere.

²²⁾なめらかな曲線: a smooth curve.

²³⁾円: a circle; 原点を中心とする半径 1 の円: the circle centered at the origin with radius 1.

 $^{^{24)}}$ $V\Delta = \lambda \tau - \Gamma$: the lemniscate.

証明・恒等式 $F(x,\varphi(x))=0$ の両辺を x で微分すると , 命題 3.23 (定理 4.3) により

$$0 = \frac{d}{dx}F(x,\varphi(x)) = \frac{\partial F}{\partial x}(x,\varphi(x))\frac{dx}{dx} + \frac{\partial F}{\partial y}(x,\varphi(x))\frac{d\varphi(x)}{dx}$$
$$= \frac{\partial F}{\partial x}(x,y) + \frac{\partial F}{\partial y}(x,y)\frac{d\varphi(x)}{dx}.$$

定理 4.12 の仮定から , 考えている点の近くで $F_y \neq 0$ だから結論を得る .

命題 4.17 の結論の式を次のように書くこともある: $\frac{dy}{dx} = -\frac{F_x}{F_y}$.

同様に,F(x,y)=0が $x=\psi(y)$ の陰関数表示で, $F_x\neq 0$ であるとき,

$$rac{d\psi}{dy}(y) = -rac{F_y(x,y)}{F_x(x,y)} \quad \left(x=\psi(y)
ight) \quad$$
すなわち $rac{dx}{dy} = -rac{F_y}{F_x}.$

問 題 4

- 4-1 命題 4.2 を確かめなさい.
- 4-2 平面上の点 (x,y) における標高が,多項式 $f(x,y)=x^2+xy+y^2$ で表されているような世界があるとする.この世界を,原点を中心とする半径 1 の円に沿って,反時計回りに速さ 1 で歩くとき,この旅はどのようなものになるか.すなわち,上り坂,下り坂になる経路上の部分を指摘しなさい.ヒント:考えている旅は例 3.22 の (2) である.
- 4-3 点 P=(a,b) を含む領域で定義された 2 変数関数 f の P における全微分 $(df)_P$ は (0,0) でないとする.このとき,f の点 P における単位ベクトル v 方向の方向微分 $(df)_P(v)$ が最大になるのは v が $(\operatorname{grad}_f)_P$ と同じ向きに平行なときである.このことを示しなさい.ヒント:v は単位ベクトルであることに注意.
- 4-4 点 P=(a,b) を含む領域で定義された 2 変数関数 f の P における全微分 $(df)_P$ は (0,0) でないとする . 点 P を通る f の等高線を $\gamma(t)=\big(x(t),y(t)\big)$ $(\gamma(0)=P)$ とパラメータ表示するとき , t=0 における γ の速度ベクトル $\dot{\gamma}(0)$ は $(\operatorname{grad} f)_P$ に直交することを示しなさい . すなわち , "等高線は勾配ベクトルに直交する" .
- 4-5 定数 $c~(\neq 0)$ に対して $\xi=x+ct,~\eta=x-ct$ により変数変換 $(t,x)\mapsto (\xi,\eta)$ を定める.このとき, C^2 -級関数 f(t,x) に対して

$$\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = -4c^2 \frac{\partial^2 f}{\partial \xi \partial \eta}$$

となることを確かめなさい.さらに, $f_{tt}-c^2f_{xx}=0$ を満たす C^2 -級関数 f は,2 つの C^2 -級の 1 変数関数 F,G を用いて f(t,x)=F(x+ct)+G(x-ct) という形に書けることを示しなさい.

第4回 (20150724) 48

方程式 $f_{tt}=c^2f_{xx}$ を波動方程式という (例 2.12). ここに述べたことを,"波動方程式のダランベールの解法 25)という(第 2 回の問題 2-11).

4-6 空間のスカラ場 f(x,y,z) に対して $\Delta f = f_{xx} + f_{yy} + f_{zz}$ を対応させる Δ を空間のラプラス作用素という(第 2 回の問題 2-13). 空間の変数変換

$$x = r \cos \theta \cos \varphi,$$
 $y = r \sin \theta \cos \varphi,$ $z = r \sin \varphi$
$$(r > 0, -\pi < \theta < \pi, -\frac{\pi}{2} < \varphi < \frac{\pi}{2})$$

に対して

$$\begin{pmatrix} r_x & r_y & r_z \\ \theta_x & \theta_y & \theta_z \\ \varphi_x & \varphi_y & \varphi_z \end{pmatrix} = \begin{pmatrix} \cos\theta\cos\varphi & \sin\theta\cos\varphi & \sin\varphi \\ -\frac{1}{r}\frac{\sin\theta}{\cos\varphi} & \frac{1}{r}\frac{\cos\theta}{\cos\varphi} & 0 \\ -\frac{1}{r}\cos\theta\sin\varphi & -\frac{1}{r}\sin\theta\sin\varphi & \frac{1}{r}\cos\varphi \end{pmatrix}$$

であることを確かめ .

$$\Delta f = f_{rr} + \frac{2}{r} f_r + \frac{1}{r^2 \cos^2 \varphi} f_{\theta\theta} + \frac{1}{r^2} f_{\varphi\varphi} - \frac{1}{r^2} \tan \varphi f_{\varphi}$$

となることを確かめなさい.

- 4-7 $F(x,y)=x^2-y^3$ とするとき F(x,y)=0 で与えられる \mathbb{R}^2 の部分集合はなめらかな曲線であるかを調べ,この図形の形を描きなさい.
- 4-8 定理 4.12 の状況 , すなわち $C=\{(x,y)\in\mathbb{R}^2\,|\,F(x,y)=0\}$ の点 $P=(x_0,y_0)$ において $F_y\neq 0$ であり , P の近くで C がグラフ $y=\varphi(x)$ と表されているとする . このとき次を示しなさい :

$$\frac{d^2y}{dx^2} = \varphi''(x) = -\frac{F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_{yy}F_x^2}{F_y^2}.$$

ただし,右辺の F_{xx} などは $(x,\varphi(x))$ における値を表す.

- 4-9 定数 a に対して $F(x,y)=2(x^2-y^2)-(x^2+y^2)^2-a$, $C=\{(x,y)\in\mathbb{R}^2\,|\,F(x,y)=0\}$ とおく.このとき C がグラフ $y=\varphi(x)$ と書けるような範囲を調べ,そこでの φ の増減,変曲点を調べ C の形を描きなさい(ヒント:a の値によって場合分けが起きる).
- 4-10 \mathbb{R}^3 の領域 D 上で定義された C^∞ 級の 3 変数関数 F(x,y,z) を用いて関係式 F(x,y,z)=0 を考える.とくに,点 P=(a,b,c) において F(P)=F(a,b,c)=0 が成り立ち,さらに,P において F_x , F_y , F_z のいずれもが 0 でないとする.このとき,P の近くで F(x,y,z)=0 は x,y,z のいずれの変数についても解くことができる:

$$F(x,y,z)=0 \qquad \Leftrightarrow \qquad x=\xi(y,z), \quad y=\eta(z,x), \quad z=\zeta(x,y).$$

点 P の近くで F(x,y,z)=0 が成り立っているとき,

$$rac{\partial \xi}{\partial y}(y,z) \cdot rac{\partial \eta}{\partial z}(z,x) \cdot rac{\partial \zeta}{\partial x}(y,z) = -1$$
 すなわち $rac{\partial x}{\partial y} rac{\partial y}{\partial z} rac{\partial z}{\partial x} = -1$

であることを確かめなさい.

²⁵⁾ダランベール: d'Alembert, Jean Le Rond (1717–1783, F).