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4 The fundamental theorem for surfaces

We shall give a proof of the following theorem in this section
(cf. Appendix B-10 in [4-1]):

Theorem 4.1 (The fundamental theorem for surface theory).
Let D be a simply connected domain of R2 and let E(> 0), F ,
G(> 0), L, M and N be a C∞-functions on D satisfying EG −
F 2 > 0, the Gauss equation (3.3), and the Codazzi equations
(3.4). Then there exists an immersion f : D → R3 whose first
and second fundamental forms are

ds2 = E du2+2F du dv+Gdv2, II = Ldu2+2M du dv+N dv2.

Moreover, such an immersion f is unique up to rotations and
parallel translations.

Facts on Linear Ordinary Differential Equations.

Theorem 4.2 (The fundamental theorem). Let V be a finite di-
mensional vector space over R and denote by Hom(V ) the space
of linear transformations on V . Take a C∞-map A : I → Hom V
defined on an interval I⊂R. Then for arbitrary t0 and v0 ∈ V ,
there exists a unique C∞-map v : I → V satisfying

(4.1)
dv

dt
(t) = A(t)v(t), v(t0) = v0.
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The equation (4.1) is called an initial value problem of a
linear differential equation.4 We denote the unique solution of
(4.1) by vA,t0,v0 .

Theorem 4.3. Under the same notations as in Theorem 4.2,
let A : I×U → Hom(V ) and and v0 : I ′ → V be C∞-maps where
I, I ′ are intervals and U ⊂ Rn is a domain. Then for arbitrarily
fixed t0 ∈ I,

R3 ⊃ I × U × I ′ ∋ (t,α, β) 7−→ vA(∗,α),t0,v0(β) ∈ V

is a C∞-map.

Theorem 4.3 is called the regularity of the solutions of ordi-
nary differential equations with respect to parameters and initial
conditions.

From now on we denote by M(n, R) (resp. GL(n, R)) the
vector space consists of the n×n-real matrices (resp. the n×n-
regular matrices).

Corollary 4.4. Let Ω : I → M(n, R) be a C∞-map defined
on an interval I. Then for t0 ∈ I and an arbitrary matrix
A0 ∈ M(n, R), there exists a unique C∞-map FA0 : I → M(n, R)
satisfying

(4.2)
dF
dt

(t) = F(t)Ω(t), F(t0) = A0.

Moreover,
4Compare with the well-known Cauchy’s existence theorem. The solu-

tion of the linear differential equation is defined on the whole interval I
where the coefficient A is defined. See [4-2] and [4-3].
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• if A0 ∈ GL(n, R) then F(t) ∈ GL(n, R), for t ∈ I,

• FB = BFid, where id is the n × n-identity matrix and FB

(resp. Fid) is the solution of (4.2) with A0 = B (A0 = id).

Proof. The first part is a direct conclusion of Theorem 4.2 for
V = M(n, R) and A(t) : V ∈ F 7→ Ω(t)F ∈ V .

Let F be the solution of (4.2). Then it holds that,

d

dt
detF = tr

(
F̃ dF

dt

)
= tr(F̃FΩ) = det F tr(Ω),

where F̃ is the cofactor matrix of F . Then f := det F satisfies

df

dt
= fω, f(t0) = a0, where ω = tr Ω and a0 = det A0.

The unique solution of above equation is

f(t) = a0 exp

(∫ t

t0

ω(s) ds

)
,

which never vanish if a0 ̸= 0. Final assertion holds by the
uniqueness of the solution of (4.2).

Integrable Partial Differential Equations. Let D be a do-
main in the uv-plane R2 and take C∞ maps Ω, Λ : D → M(n, R).
In this section we consider a system of differential equations of
unknown F : D → M(n, R):

(4.3)
∂F
∂u

= FΩ,
∂F
∂v

= FΛ, F(P) = F0 ∈ GL(n, R),

where P ∈ D is a fixed point.
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Lemma 4.5. Assume that there exists a solution F of (4.3).
Then F(u, v) ∈ GL(n, R) for any (u, v) ∈ D and it holds that

(4.4) Ωv − Λu = ΩΛ − ΛΩ.

Proof. Fix Q ∈ D and take a smooth path γ(t) =
(
u(t), v(t)

)

(0 ≦ t ≦ 1) on D joining P and Q. Then F ◦ γ(t) : [0, 1] →
M(n, R) satisfies

(4.5)
dF ◦ γ

dt
(t) = F ◦ γ(t)Ω̂(t), F ◦ γ(0) = F0 ∈ GL(n, R),

Ω̂(t) := Ω ◦ γ(t)u̇(t) + Λ ◦ γ(t)v̇(t).

Then Corollary 4.4 implies that F(Q) ∈ GL(n, R). Since Q is
arbitrary, the first assertion holds.

The second assertion can be proven by the same way in the
proof of Lemma 3.1.

Theorem 4.6. Let D be a simply connected domain in R2.
Then there exists a unique solution F : D → M(n, R) of (4.3) if
Ω and Λ satisfy (4.4).

Proof. First we shall prove the uniqueness: Let F1 and F2 be the
solutions of (4.3). Since the values of Fj are regular matrices
(Lemma 4.5), we can set G := F1F−1

2 . Then by the similar
computation in the proof of Corollary 2.6, we have Gu = Gv = O,
and hence G is constant on D:

G(P) = F1(P)F2(P)−1 = F0F
−1
0 = id .

Then we have F1 = F2.
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Next, we prove the existence. Take Q ∈ D arbitrarily and
choose a path γ(t) =

(
u(t), v(t)

)
(0 ≦ t ≦ 1) joining P and

Q, and consider the ordinary differential equation (4.5). Let
Fγ : I → GL(n, R) be the unique solution (cf. Corollary 4.4) of
(4.5), and set F(γ, Q) := Fγ(1).

We now prove that F does not depend on the choice of the
path γ. Take another path γ̃ joining P and Q. Since D is
simply connected, they are homotopically equivalent. In other
words, we can take a smooth map σ : [0, 1] × [0, 1] → D such
that σ(0, t) = γ(t), σ(1, t) = γ̃(t), σ(s, 0) = P, σ(s, 1) = Q. We
write σ(s, t) =

(
u(s, t), v(s, t)

)
and set

S = Ω ◦ σus + Λ ◦ σvs, T = Ω ◦ σut + Λ ◦ σvt.

Note that

(4.6) S(s, 1) = O (0 ≦ s ≦ 1),

because σ(s, 1) is constant. For each fixed s ∈ [0, 1], take the
unique solution F̂(s, t) of the ordinary differential equation

(4.7)
∂F̂(s, t)

∂t
= F̂(s, t)T (s, t), F̂(s, 0) = F0.

Then by the regularity of the solution of ordinary differential
equation with respect to the parameters, we have a smooth map
F̂ : [0, 1] × [0, 1] → D, and by definition,

F0 = F̂(s, 0), F(γ, Q) = F̂(0, 1), F(γ̃, Q) = F̂(1, 1),

that is, to show that F(γ, Q) does not depend on γ, it is sufficient
to show that F̂(0, 1) = F̂(1, 1). Noticing St −Ts −ST +TS = O
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holds because of (4.4), we have
(
F̂s − F̂S

)
t
= F̂st − F̂tS − F̂St

= F̂ts − FTS − FSt = (F̂s − F̂S)T.

Hence for each fixed s, F̂s − F̂S is another solution of the same
equation (4.7) with the initial condition F̂s(s, 0)−F̂(s, 0)S(s, 0) =
O. Hence F̂s − F̂S = O for (s, t) ∈ [0, 1] × [0, 1]. In particular,
F̂s(s, 1) = F̂(s, 1)S(s, 1) = O and then F̂(s, 1) is constant.

Thus, by setting F(Q) := F(γ,Q), we have the map F : D →
M(n, R). We finally prove that F satisfies the equation (4.3).
Let Q = (u0, v0), Qh = (u0 + h, v0) and set γ(t) = (u0 + th, v0)
(t ∈ [0, 1]). Then F(Qh) = F̂(1), where F̂ is a solution of

dF̂
dt

= hF̂Ω ◦ γ(t), F̂(0) = F(Q).

Thus, we can show

Fu(Q) = lim
h→0

F(Q−h) − F(Q)

h
= F(Q)Ω(Q).

Similarly, we have Fv = FΛ.

Corollary 4.7 (Poincaré Lemma). Let α := ω du + λ dv be a
differential one form on a simply connected domain D ⊂ R2.
If dα = (λu − ωv)du ∧ dv = 0, there exists a smooth function
f : D → R such that df = α.

Proof. Consider the equation φu = φω, φv = φλ and apply
Theorem 4.6 for n = 1. Letting f = eφ, we have the desired
function.
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Proof of Theorem 4.1. The uniqueness is already shown in
Corollary 2.6. We show the existence. Consider the equation
(3.1). with initial condition at P ∈ D

F(P) :=




√
E0 F0/

√
E0 0

0
√

(E0G0 − F 2
0 )/E0 0

0 0 1


 ,

where E0 = E(P), . . . . Then by Theorem 4.6, there exists
the unique solution F : D → GL(3, R). Write F = (ω, λ, ν).
Then by the equation (3.1), ωv = λu, that is, R3-valued one
form α = ω du + λ dv is closed. Then by the Poincaré lemma
(Corollary 4.7), there exists a smooth map f : D → R3 such
that fu = ω, fv = λ. We show that f is the desired surface. Let

H := tFF =




fu · fu fu · fv fu · ν
fv · fu fv · fv fv · ν
ν · fu ν · fv ν · ν


 ,

(
F = (fu, fv, ν)

)
.

Take an arbitrary Q ∈ D and a path γ joining P and Q. Then
Ĥ = H ◦ γ satisfies the linear ordinary equation

(4.8)
dĤ
dt

=
t
Ω̂Ĥ + ĤΩ̂

where Ω̂(t) is as in (4.5). On the other hand,

Ĥ0 = H0 ◦ γ, H0 =




E F 0
F G 0
0 0 1



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is a solution of (4.8) with same initial condition as Ĥ (cf. Prob-
lem 4-1). Thus Ĥ = Ĥ0 by the uniqueness part of Theorem 4.2.
Since Q is arbitrary, we have

fu · fu = E, fu · fv = F, fv · fv = G, fu · ν = fv · ν = 0, |ν| = 1.

Hence the entries of first fundamental form of f is E, F , G and
ν is the unit normal vector. Then by (3.1), we can show that
the entries of the second fundamental form are L, M and N .
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Exercises

4-1H Let Ω and Λ be as in (3.1). Prove that

H :=




E F 0
F G 0
0 0 1




satisfies the equation

∂H
∂u

= tΩH + HΩ,
∂H
∂v

= tΛH + HΛ.


