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4 The fundamental theorem for surfaces

We shall give a proof of the following theorem in this section
(cf. Appendix B-10 in [4-1]):

Theorem 4.1 (The fundamental theorem for surface theory).
Let D be a simply connected domain of R? and let E(> 0), F,
G(>0), L, M and N be a C*®-functions on D satisfying EG —
F? > 0, the Gauss equation (3.3), and the Codazzi equations
(3.4). Then there exists an immersion f: D — R® whose first
and second fundamental forms are

ds®> = Edu®+2F dudv+G dv?, IT = L du?®+2M dudv+ N dv?.

Moreover, such an immersion f is unique up to rotations and
parallel translations.

Facts on Linear Ordinary Differential Equations.

Theorem 4.2 (The fundamental theorem). Let V' be a finite di-
mensional vector space over R and denote by Hom(V') the space
of linear transformations on V. Take a C*>°-map A: I — Hom V'
defined on an interval ICR. Then for arbitrary tg and vo € V,
there exists a unique C*°-map v: I — V satisfying

Wity = Awls), (o) = o
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The equation (4.1) is called an initial value problem of a
linear differential equation.* We denote the unique solution of

(41) by vA,tO/UO .

Theorem 4.3. Under the same notations as in Theorem 4.2,
let A: IxU — Hom(V) and and vo: I' — V be C*°-maps where
I, I are intervals and U C R"™ is a domain. Then for arbitrarily
fized ty € 1,

R3OIxUxI > (t,a, 5) —> VA(x,00) t0,V0(8) € \%
18 a C*°-map.

Theorem 4.3 is called the regularity of the solutions of ordi-
nary differential equations with respect to parameters and initial
conditions.

From now on we denote by M(n,R) (resp. GL(n,R)) the
vector space consists of the n x n-real matrices (resp. the n x n-
regular matrices).

Corollary 4.4. Let 2: 1 — M(n,R) be a C®-map defined
on an interval I. Then for to € I and an arbitrary matriz
Ao € M(n,R), there exists a unique C*°-map Fa,: I — M(n,R)
satisfying

@) Twm=roew.,  Fuw) =4

Moreover,

4Compare with the well-known Cauchy’s existence theorem. The solu-
tion of the linear differential equation is defined on the whole interval I
where the coefficient A is defined. See [4-2] and [4-3].
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o if Ay € GL(n,R) then F(t) € GL(n,R), fort eI,

e Fp = BFiq, whereid is the n X n-identity matriz and Fpg
(resp. Fiq) is the solution of (4.2) with Ag = B (Ao = id).
Proof. The first part is a direct conclusion of Theorem 4.2 for
V=Mn,R)and A(t): Ve F— Qt)FeV.
Let F be the solution of (4.2). Then it holds that,

%det}" =tr (fﬁ) = tr(FFR) = det F tr(£2),

where F is the cofactor matrix of 7. Then f = det F satisfies

% = fw, f(to) =ap, wherew =tr {2 and ap = det Ay.

The unique solution of above equation is

#0)= oo /t:oJ(s) ).

which never vanish if ag # 0. Final assertion holds by the
uniqueness of the solution of (4.2). O

Integrable Partial Differential Equations. Let D be a do-
main in the uv-plane R? and take C>° maps £2, A: D — M(n, R).
In this section we consider a system of differential equations of
unknown F: D — M(n,R):

oOF oOF

(43) Z-=F02  S-=FA F(P)=F eGLnR)

where P € D is a fixed point.
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Lemma 4.5. Assume that there exists a solution F of (4.3).
Then F(u,v) € GL(n,R) for any (u,v) € D and it holds that

(4.4) 2y — Ay = QA — AL.

Proof. Fix Q € D and take a smooth path v(t) = (u(t),v(t)
(0=t <£1)on D joining P and Q. Then F o~(t): [0,1] —
M(n,R) satisfies

d};isv(t) =Fo 7<t)f2(t)7 Fo~v(0) = Fy € GL(n,R),

Q(t) == Qo y(t)a(t) + Ao (t)o(t).

Then Corollary 4.4 implies that F(Q) € GL(n,R). Since Q is
arbitrary, the first assertion holds.

The second assertion can be proven by the same way in the
proof of Lemma 3.1. O

(4.5)

Theorem 4.6. Let D be a simply connected domain in R2.
Then there exists a unique solution F: D — M(n,R) of (4.3) if
Q2 and A satisfy (4.4).

Proof. First we shall prove the uniqueness: Let F; and F5 be the
solutions of (4.3). Since the values of F; are regular matrices
(Lemma 4.5), we can set G := F1F, *. Then by the similar
computation in the proof of Corollary 2.6, we have G, = G, = O,
and hence G is constant on D:

G(P) = Fi(P)F(P)™' = FyFy ' =id.

Then we have F; = Fs.
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Next, we prove the existence. Take Q € D arbitrarily and
choose a path y(t) = (u(t),v(t)) (0 £t £ 1) joining P and
Q, and consider the ordinary differential equation (4.5). Let
Fy: I — GL(n,R) be the unique solution (cf. Corollary 4.4) of
(4.5), and set F(v,Q) := F,(1).

We now prove that F does not depend on the choice of the
path . Take another path 4 joining P and Q. Since D is
simply connected, they are homotopically equivalent. In other
words, we can take a smooth map o: [0,1] x [0,1] — D such
that (0,t) = ~(t), o(1,t) = 3(t), 0(s,0) =P, o(s,1) = Q. We
write o(s,t) = (u(s,t),v(s,t)) and set

S=80Roous+ Aoovs,, T =o00ou;+ Aoou,.
Note that
(4.6) S(s,1)=0 (0s<1),

because o(s, 1) is constant. For each fixed s € [0,1], take the
unique solution F(s,t) of the ordinary differential equation

OF(s,t) . -
) _ FeT(s), F(s0) = Ry

Then by the regularity of the solution of ordinary differential
equation with respect to the parameters, we have a smooth map

F:0,1] x [0,1] — D, and by definition,

Fy :f(S,O), f(’YvQ) :‘7:(071)’ ]:(:Ya Q) :‘F(Ll)v

(4.7)

that is, to show that F (v, Q) does not depend on 1, it is sufficient
to show that F(0,1) = F(1,1). Noticing Sy —Ts—ST+TS = O
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holds because of (4.4), we have
(]}5 *./_:.S)t = -/_:.st *./_:.tS*./_:.St
= Fis — FTS — FS, = (F, — FS)T.

Hence for each fixed s, F, — F'S is another solution of the same
equation (4.7) with the initial condition F (s, 0)—F (s, 0)S(s,0)
O. Hence F, — FS = O for (s,t) € [0,1] x [0,1]. In particular,
Fi(s,1) = F(s,1)S(s,1) = O and then F(s,1) is constant.

Thus, by setting F(Q) := F(v, Q), we have the map F: D —
M(n,R). We finally prove that F satisfies the equation (4.3).
Let Q = (uo,v0), Qn = (ug + h,vo) and set y(t) = (ug + th,vg)
(t € [0,1]). Then F(Qy) = F(1), where F is a solution of

% —hEQon(),  F(0) = F(Q)

Thus, we can show

F(Q-n) = F(Q)

Fu(Q) = Jim =228 F(Q)a(q).
Similarly, we have F, = FA. O

Corollary 4.7 (Poincaré Lemma). Let o := wdu + Adv be a
differential one form on a simply connected domain D C R2.
If doo = (Ay — wy)du A dv = 0, there exists a smooth function
f: D — R such that df = «.

Proof. Consider the equation ¢, = pw, ¢, = @A and apply
Theorem 4.6 for n = 1. Letting f = e¥, we have the desired
function. O
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Proof of Theorem 4.1. The uniqueness is already shown in
Corollary 2.6. We show the existence. Consider the equation
(3.1). with initial condition at P € D

VEs  RJVE, 0

FP):=| 0 /(EeGo—F3)/Ey 0],
0 0 1
where Fy = E(P), .... Then by Theorem 4.6, there exists

the unique solution F: D — GL(3,R). Write F = (w, A, v).
Then by the equation (3.1), w, = A, that is, R*-valued one
form o = wdu + Adv is closed. Then by the Poincaré lemma
(Corollary 4.7), there exists a smooth map f: D — R3 such
that f, = w, f, = X\. We show that f is the desired surface. Let

fu'fu fufv fu'y
H='FF= Jofu fo-fo forv], (‘F:(f“’fv’y))'

Vefu vefy veov

Take an arbitrary Q € D and a path « joining P and Q. Then
‘H = H oy satisfies the linear ordinary equation

i>

d

(4.8) = O+ 0

U

t

where (2(t) is as in (4.5). On the other hand,

A E F 0
Ho =Hoon, Ho=|F G O
0 0 1
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is a solution of (4.8) with same initial condition as H (cf. Prob-
lem 4-1). Thus H = Hg by the uniqueness part of Theorem 4.2.
Since Q is arbitrary, we have

fu',fu:E7 fu'fv:Fv fv'fv:G7 fu'V:fv'V:O> |V‘:1'

Hence the entries of first fundamental form of f is E, F', G and
v is the unit normal vector. Then by (3.1), we can show that
the entries of the second fundamental form are L, M and N.
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Exercises
4-1" Let 2 and A be as in (3.1). Prove that
E F 0
H=|F G 0
0 0 1

satisfies the equation

a—H:t(ZH+'HQ7 8—H:t/17-[+7-[/1.
ou ov



