1 Area minimizing surfaces

1.1 A review of surface theory.

Let D C R? be a domain in the wv-plane and f: D — R? an
immersion. We often refer to such an immersion as a surface.
Then the unit normal vector of f is given by (with +-ambiguity)

o dux s
R

where “x” denotes the vector product of R3. The first and the
second fundamental forms are defined as

(1.1) :D— S? ={x c R®||x| = 1} C R,

ds?> = df - df = Edu® + 2F dudv + G dv?,

(1.2) ) )
I =—df -dv = Ldu*+ 2M dudv + N dv*,

where “” denotes the canonical inner product of R3. Here,

E::fu'fua F::fu'fv:fv'fuv G::fv'fw
L::_fu'l/uv M::_fu'yv:_fv'yuv N::_fv'l/v
:fuu'V7 :fuv'V7 :fvv'y
are called the entries of the first and the second fundamental

forms with respect to the parameters (u,v). The area of the
image of a compact region {2 C D is computed as

(1.3) A(R) = //QdA://Quuvamudv,
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where dA = |f, X fp| dudv=vEG — F? dudv is said to be the
area element of the surface.
The derivatives of v is written as (the Weingarten Formula)

(1-4) Uy = *A%fu - A%fva Vy = *A%fu - A%fva
A:A%AézEF_lLM
’ A2 A2 F G M N)°
The matrix A is called the Weingarten matriz, and the determi-
nant K and the half H of the trace of A are called the Gaussian
curvature and the mean curvature, respectively:
LN — M? 1 A} + A3

15) K :=detA= -~ 20 Hi=—trA=
(1.5) ¢ EG—F2° 2 2

1.2 Area minimizing surfaces.
The purpose of this section is to show the following fact:

For a given simple closed curve C in R3, the surface
which minimizing area among all surfaces bounded
by C is a surface whose mean curvature vanishes
identically.

Setting up. As the description of the above fact is rather
intuituive, we will formulate the problem.
Let C be a simple closed smooth curve in R? and set

(1.6) Sp i {f D s R3- f is a C*°-immersion }
. c = : ; ’

foD)=¢C
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where D (resp. D) is the open (resp. closed) unit disc and D
is its boundary:!

(1.7) D:=DuUaD, {(u,v) € R?*; u? + 02 < 1},
{(u,v) € R*; u? +v* =1}
=

(cosf,sind); 6 € R}.

Roughly speaking, S¢ is “the set of the surfaces bounded by
C”. Then we set the area functional as

(1.8)  A:Se s f— A(f) :/§|fu X fol dudv.

Using these notations, our result can be stated as the following:

Theorem 1.1. If a surface f € S¢ attains the minimum of the
area functional A, the mean curvature of f vanishes identically.

Taking this fact into account, we define

Definition 1.2. A surface whose mean curvature vanishes iden-
tically is said to be minimal.

Remark 1.3. As Theorem 1.1 is a necessary condition for the
minimizer, a minimal surface is not necessarily a minimizer of
the area functional.

LA map f defined on D is said to be C° if there exists a open set D
containing D and a C°° map f defined on D such that f|D =
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Variations of surfaces. To show Theorem 1.1, we want to
“differentiate” the functional A.

Definition 1.4. For a surface f € S¢, a variation (fixing the
boundary) of f is a C*°-map

F: D x (—¢,¢) 2 (u,v;t) — fi(u,v) := F(u,v;t) € R?

such that f° = f and f' € S¢ for each t € (—¢,¢), where ¢ is a
positive number. The vector-valued function
0

(1.9) V(u,v) := e B

fH(u,v)

is called the variational vector field of the variation F.

Lemma 1.5. For a variation F = {ft} of f € S. with varia-
tional vector field V', it holds that

d
@f(cos 0,sin6) x V(cosf,sinf) = 0.

Proof. Since (cosf,sinf) is a parametrization of 9D, v*(0) :=
ft(cos@,sin0) € C for all t and 6. Thus, two vectors in the left-
hand side of the first assertion are both tangent to C, proving
the lemma. O

The first variation formula.

Theorem 1.6. Let F = {f!'} be a variation of f € Sc with
variational vector field V.. Then it holds that

d

= tZOA(ft) 2—2//EH(V'I/) dA

(1.10) 7
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where H, v and dA are the mean curvature, the unit normal
vector and the area element of f, respectively.

Proof. By the definition of the area (1.3), we have

a //|f5xf5|dudw
t=0/JD

d

W,
|fo % fol dudv
t=0

~

:// (Vi X fo + fu X Vi) - (fu % fo)
D | fu X fol

// w X fo+ fuxVy) -vdudy
// Vi x fo) v+ (fu x Vo) - v) dudo.

Here, by the formula of scalar triple product

AP = 5

du dv

(axb)-c=(bxec)-a=(cxa) b=det(a,b,c),

we have

// (v x fo) Vut (fuxv) V) dudv

// (x £) V) + ((fu x v)-V),] dudv,
://5[((yva)u~V)+(fu x ) V)] dudo.
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By the Green-Stokes formula, (I) is computed as

D= [[ [ £)-v), = (v x £)-V),] dudo,
:/8Du-((fudu+fvdv)><v)

:/ v (jgf(cose sinf) x V(cos Q,Sine)) df = 0.

—T

Here, the last assertion is obtained by Lemma 1.5. On the other
hand, using the Weingarten formula (1.4), (II) is computed as

://E[(yuva)-‘/—ir(uxfw)-v

+(fuw x V) -V 4 (fu x 1) - V] dudv

://ﬁ[(yu % £2) V4 (fu x 1) - V] dudv
— ([ [(Atfa+ a2y x 1) v

+(fu x (Abfu+ A31,)) - V] dudy
- [t + a3y 1)V dude
D

—//B2H(V-V)|fu><fv|d’ltdv O

Proof of Theorem 1.1. We need the following “the funda-
mental lemma for calculus of variations”.
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Lemma 1.7. Assume a smooth function h: D — R satisifes

//Eh(u,v)cp(u, v)dudv =0

for all C*°-function with ¢|sp =0. Then h =0 on D.

Proof. Assume h(ug,vo) > 0 (resp. < 0)((ug,v0) € D). By a
continuity, there exists € > 0 such that h(u,v) > — on an e-ball
B := B.(up,vg) centered at (ug,vg). Let ¢ be a non-negative
C*>-function on D such that ¢ > 0 on B and 0 on D\ B. Then

/Lh@dudv:// hodudv >0 (resp. < 0),
D B

a contradiction. O

Proof of Theorem 1.6. Assume f € S¢ minimizes the area. Then
for any variation F = {f*} of f, A(f") is not less than A(f) =
A(f%). Then by Theorem 1.6, it holds that

d
0=

A(fY) = —Q/EH(V-V)U”U X fy| dudv.

t=0

Let ¢ be a C*-function on D with p|sp = 0. Then f* := f-+tpv
is a variation of f with variational vector field V' = ¢v. Thus,

/ H|fu % folp = 0.

Since ¢ is arbitrary, Lemma 1.7 yields the conclusion. O
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Ezxercises

1-1¥ For P, Q € R?, set

v is a regular curve
Cpq = 1¢7:[0,1] = R ;
° { ¥(0) =P, 4(1) =Q

and denote by L the length functional:

to)= [ () ds (-%)

A variation of a curve v € Cp q is a C°°-map
I:[0,1] x (—¢,€) = ~'(s) = I'(s,t) € R?

such that v* € Cp q for each t € (—¢,¢) and 7° = 7.

Then show the first variation formula for the length func-

tional

d ! it — &y
Glocon=-[wma n=PoH g,
dt|,_, 0 912

where V is the variational vector field of the variation {7*}
of the curve v(s) = (z(s), y(s)).



