1 Area minimizing surfaces

1.1 A review of surface theory.

Let $D \subset \mathbb{R}^{2}$ be a domain in the $u v$-plane and $f: D \rightarrow \mathbb{R}^{3}$ an immersion. We often refer to such an immersion as a surface. Then the unit normal vector of f is given by (with \pm-ambiguity)
(1.1) $\quad \nu:=\frac{f_{u} \times f_{v}}{\left|f_{u} \times f_{v}\right|}: D \longrightarrow S^{2}=\left\{\boldsymbol{x} \in \mathbb{R}^{3}| | \boldsymbol{x} \mid=1\right\} \subset \mathbb{R}^{3}$,
where " x " denotes the vector product of \mathbb{R}^{3}. The first and the second fundamental forms are defined as

$$
\begin{align*}
d s^{2} & =d f \cdot d f=E d u^{2}+2 F d u d v+G d v^{2} \\
I I & =-d f \cdot d \nu=L d u^{2}+2 M d u d v+N d v^{2} \tag{1.2}
\end{align*}
$$

where "." denotes the canonical inner product of \mathbb{R}^{3}. Here,

$$
\begin{array}{rlrlrl}
E: & =f_{u} \cdot f_{u}, & F & : & =f_{u} \cdot f_{v}=f_{v} \cdot f_{u}, & G: \\
L: & =-f_{u} \cdot f_{u} \cdot f_{v}, \\
& =f_{u u} \cdot \nu, & M: & =-f_{u} \cdot \nu_{v}=-f_{v} \cdot \nu_{u}, & N: & =-f_{v} \cdot \nu_{v} \\
& & =f_{u v} \cdot \nu, & & =f_{v v} \cdot \nu
\end{array}
$$

are called the entries of the first and the second fundamental forms with respect to the parameters (u, v). The area of the image of a compact region $\Omega \subset D$ is computed as
(1.3) $\mathcal{A}(\Omega):=\iint_{\Omega} d A=\iint_{\Omega}\left|f_{u} \times f_{v}\right| d u d v$,
24. June, 2016. Revised: 01. July, 2016
where $d A=\left|f_{u} \times f_{v}\right| d u d v=\sqrt{E G-F^{2}} d u d v$ is said to be the area element of the surface.

The derivatives of ν is written as (the Weingarten Formula)
(1.4) $\quad \nu_{u}=-A_{1}^{1} f_{u}-A_{1}^{2} f_{v}, \quad \nu_{v}=-A_{2}^{1} f_{u}-A_{2}^{2} f_{v}$,

$$
A:=\left(\begin{array}{ll}
A_{1}^{1} & A_{2}^{1} \\
A_{1}^{2} & A_{2}^{2}
\end{array}\right)=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) .
$$

The matrix A is called the Weingarten matrix, and the determinant K and the half H of the trace of A are called the Gaussian curvature and the mean curvature, respectively:
(1.5) $K:=\operatorname{det} A=\frac{L N-M^{2}}{E G-F^{2}}$,

$$
H:=\frac{1}{2} \operatorname{tr} A=\frac{A_{1}^{1}+A_{2}^{2}}{2} .
$$

1.2 Area minimizing surfaces.

The purpose of this section is to show the following fact:
For a given simple closed curve C in \mathbb{R}^{3}, the surface which minimizing area among all surfaces bounded by C is a surface whose mean curvature vanishes identically.

Setting up. As the description of the above fact is rather intuituive, we will formulate the problem.

Let C be a simple closed smooth curve in \mathbb{R}^{3} and set

$$
\mathcal{S}_{C}:=\left\{\begin{array}{ll}
f: \bar{D} \rightarrow \mathbb{R}^{3} ; & \begin{array}{l}
f \text { is a } C^{\infty} \text { _immersion } \\
f(\partial D)=C
\end{array} \tag{1.6}
\end{array}\right\}
$$

where D (resp. \bar{D}) is the open (resp. closed) unit disc and ∂D is its boundary: ${ }^{1}$

$$
\text { (1.7) } \begin{aligned}
\bar{D}:=D \cup \partial D, \quad & :=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}, \\
\partial D & :=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}=1\right\} \\
& =\{(\cos \theta, \sin \theta) ; \theta \in \mathbb{R}\} .
\end{aligned}
$$

Roughly speaking, \mathcal{S}_{C} is "the set of the surfaces bounded by C ". Then we set the area functional as

$$
\begin{equation*}
\mathcal{A}: \mathcal{S}_{C} \ni f \longmapsto \mathcal{A}(f)=\iint_{\bar{D}}\left|f_{u} \times f_{v}\right| d u d v . \tag{1.8}
\end{equation*}
$$

Using these notations, our result can be stated as the following:
Theorem 1.1. If a surface $f \in \mathcal{S}_{C}$ attains the minimum of the area functional \mathcal{A}, the mean curvature of f vanishes identically.

Taking this fact into account, we define
Definition 1.2. A surface whose mean curvature vanishes identically is said to be minimal.

Remark 1.3. As Theorem 1.1 is a necessary condition for the minimizer, a minimal surface is not necessarily a minimizer of the area functional.

[^0]Variations of surfaces. To show Theorem 1.1, we want to "differentiate" the functional \mathcal{A}.
Definition 1.4. For a surface $f \in \mathcal{S}_{C}$, a variation (fixing the boundary) of f is a C^{∞}-map

$$
\mathcal{F}: \bar{D} \times(-\varepsilon, \varepsilon) \ni(u, v ; t) \longmapsto f^{t}(u, v):=\mathcal{F}(u, v ; t) \in \mathbb{R}^{3}
$$

such that $f^{0}=f$ and $f^{t} \in \mathcal{S}_{C}$ for each $t \in(-\varepsilon, \varepsilon)$, where ε is a positive number. The vector-valued function

$$
\begin{equation*}
V(u, v):=\left.\frac{\partial}{\partial t}\right|_{t=0} f^{t}(u, v) \tag{1.9}
\end{equation*}
$$

is called the variational vector field of the variation \mathcal{F}.
Lemma 1.5. For a variation $\mathcal{F}=\left\{f^{t}\right\}$ of $f \in \mathcal{S}_{c}$ with variational vector field V, it holds that

$$
\frac{d}{d \theta} f(\cos \theta, \sin \theta) \times V(\cos \theta, \sin \theta)=\mathbf{0}
$$

Proof. Since $(\cos \theta, \sin \theta)$ is a parametrization of $\partial D, \gamma^{t}(\theta):=$ $f^{t}(\cos \theta, \sin \theta) \in C$ for all t and θ. Thus, two vectors in the lefthand side of the first assertion are both tangent to C, proving the lemma.

The first variation formula.

Theorem 1.6. Let $\mathcal{F}=\left\{f^{t}\right\}$ be a variation of $f \in \mathcal{S}_{C}$ with variational vector field V. Then it holds that

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(f^{t}\right)=-2 \iint_{\bar{D}} H(V \cdot \nu) d A \tag{1.10}
\end{equation*}
$$

where H, ν and $d A$ are the mean curvature, the unit normal vector and the area element of f, respectively.
Proof. By the definition of the area (1.3), we have

$$
\begin{aligned}
(*): & =\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(f^{t}\right)=\left.\frac{d}{d t}\right|_{t=0} \iint_{\bar{D}}\left|f_{u}^{t} \times f_{v}^{t}\right| d u d v \\
& =\left.\iint_{\bar{D}} \frac{\partial}{\partial t}\right|_{t=0}\left|f_{u}^{t} \times f_{v}^{t}\right| d u d v \\
& =\iint_{\bar{D}} \frac{\left(V_{u} \times f_{v}+f_{u} \times V_{v}\right) \cdot\left(f_{u} \times f_{v}\right)}{\left|f_{u} \times f_{v}\right|} d u d v \\
& =\iint_{\bar{D}}\left(V_{u} \times f_{v}+f_{u} \times V_{v}\right) \cdot \nu d u d v \\
& =\iint_{\bar{D}}\left(\left(V_{u} \times f_{v}\right) \cdot \nu+\left(f_{u} \times V_{v}\right) \cdot \nu\right) d u d v
\end{aligned}
$$

Here, by the formula of scalar triple product

$$
(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=(\boldsymbol{b} \times \boldsymbol{c}) \cdot \boldsymbol{a}=(\boldsymbol{c} \times \boldsymbol{a}) \cdot \boldsymbol{b}=\operatorname{det}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}),
$$

we have

$$
\begin{aligned}
(*) & =\iint_{\bar{D}}\left(\left(\nu \times f_{v}\right) \cdot V_{u}+\left(f_{u} \times \nu\right) \cdot V_{v}\right) d u d v \\
& =(\mathrm{I})-(\mathrm{II})
\end{aligned}
$$

$$
(\mathrm{I}):=\iint_{\bar{D}}\left[\left(\left(\nu \times f_{v}\right) \cdot V\right)_{u}+\left(\left(f_{u} \times \nu\right) \cdot V\right)_{v}\right] d u d v
$$

$$
\left.\left.(\mathrm{II}):=\iint_{\bar{D}}\left[\left(\left(\nu \times f_{v}\right)_{u} \cdot V\right)+\left(f_{u} \times \nu\right)_{v} \cdot V\right)\right)\right] d u d v
$$

By the Green-Stokes formula, (I) is computed as

$$
\begin{aligned}
(\mathrm{I}) & =\iint_{\bar{D}}\left[\left(\left(\nu \times f_{v}\right) \cdot V\right)_{u}-\left(\left(\nu \times f_{u}\right) \cdot V\right)_{v}\right] d u d v \\
& =\int_{\partial D} \nu \cdot\left(\left(f_{u} d u+f_{v} d v\right) \times V\right) \\
& =\int_{-\pi}^{\pi} \nu \cdot\left(\frac{d}{d \theta} f(\cos \theta, \sin \theta) \times V(\cos \theta, \sin \theta)\right) d \theta=0
\end{aligned}
$$

Here, the last assertion is obtained by Lemma 1.5. On the other hand, using the Weingarten formula (1.4), (II) is computed as

$$
\begin{aligned}
(\mathrm{II}):= & \iint_{\bar{D}}\left[\left(\nu_{u} \times f_{v}\right) \cdot V+\left(\nu \times f_{v u}\right) \cdot V\right. \\
& \left.+\left(f_{u v} \times \nu\right) \cdot V+\left(f_{u} \times \nu_{v}\right) \cdot V\right] d u d v \\
= & \iint_{\bar{D}}\left[\left(\nu_{u} \times f_{v}\right) \cdot V+\left(f_{u} \times \nu_{v}\right) \cdot V\right] d u d v \\
= & -\iint_{\bar{D}}\left[\left(\left(A_{1}^{1} f_{u}+A_{1}^{2} f_{v}\right) \times f_{v}\right) \cdot V\right. \\
& \left.+\left(f_{u} \times\left(A_{2}^{1} f_{u}+A_{2}^{2} f_{v}\right)\right) \cdot V\right] d u d v \\
= & -\iint_{\bar{D}}\left(A_{1}^{1}+A_{2}^{2}\right)\left(f_{u} \times f_{v}\right) \cdot V d u d v \\
= & -\iint_{\bar{D}} 2 H(\nu \cdot V)\left|f_{u} \times f_{v}\right| d u d v
\end{aligned}
$$

Proof of Theorem 1.1. We need the following "the fundamental lemma for calculus of variations".

Lemma 1.7. Assume a smooth function $h: \bar{D} \rightarrow \mathbb{R}$ satisifes

$$
\iint_{\bar{D}} h(u, v) \varphi(u, v) d u d v=0
$$

for all C^{∞}-function with $\left.\varphi\right|_{\partial D}=0$. Then $h=0$ on D.
Proof. Assume $h\left(u_{0}, v_{0}\right)>0$ (resp. $\left.<0\right)\left(\left(u_{0}, v_{0}\right) \in D\right)$. By a continuity, there exists $\varepsilon>0$ such that $h(u, v)>-$ on an ε-ball $B:=B_{\varepsilon}\left(u_{0}, v_{0}\right)$ centered at $\left(u_{0}, v_{0}\right)$. Let φ be a non-negative C^{∞}-function on \bar{D} such that $\varphi>0$ on B and 0 on $\bar{D} \backslash B$. Then

$$
\iint_{\bar{D}} h \varphi d u d v=\iint_{B} h \varphi d u d v>0 \quad(\text { resp. }<0)
$$

a contradiction.
Proof of Theorem 1.6. Assume $f \in \mathcal{S}_{C}$ minimizes the area. Then for any variation $\mathcal{F}=\left\{f^{t}\right\}$ of $f, \mathcal{A}\left(f^{t}\right)$ is not less than $\mathcal{A}(f)=$ $\mathcal{A}\left(f^{0}\right)$. Then by Theorem 1.6, it holds that

$$
0=\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(f^{t}\right)=-2 \int_{\bar{D}} H(V \cdot \nu)\left|f_{u} \times f_{v}\right| d u d v
$$

Let φ be a C^{∞}-function on \bar{D} with $\left.\varphi\right|_{\partial D}=0$. Then $f^{t}:=f+t \varphi \nu$ is a variation of f with variational vector field $V=\varphi \nu$. Thus,

$$
\iint H\left|f_{u} \times f_{v}\right| \varphi=0
$$

Since φ is arbitrary, Lemma 1.7 yields the conclusion.

Exercises

$\mathbf{1 - 1}{ }^{\mathrm{H}}$ For $\mathrm{P}, \mathrm{Q} \in \mathbb{R}^{2}$, set

$$
\mathcal{C}_{\mathrm{P}, \mathrm{Q}}:=\left\{\gamma:[0,1] \rightarrow \mathbb{R}^{2} ; \begin{array}{l}
\gamma \text { is a regular curve } \\
\gamma(0)=\mathrm{P}, \gamma(1)=\mathrm{Q}
\end{array}\right\}
$$

and denote by \mathcal{L} the length functional:

$$
\mathcal{L}(\gamma):=\int_{0}^{1}|\dot{\gamma}(s)| d s \quad\left(\cdot=\frac{d}{d s}\right)
$$

A variation of a curve $\gamma \in \mathcal{C}_{\mathrm{P}, \mathrm{Q}}$ is a C^{∞}-map

$$
\Gamma:[0,1] \times(-\varepsilon, \varepsilon) \rightarrow \gamma^{t}(s)=\Gamma(s, t) \in \mathbb{R}^{2}
$$

such that $\gamma^{t} \in \mathcal{C}_{\mathrm{P}, \mathrm{Q}}$ for each $t \in(-\varepsilon, \varepsilon)$ and $\gamma^{0}=\gamma$.
Then show the first variation formula for the length functional
$\left.\frac{d}{d t}\right|_{t=0} \mathcal{L}\left(\gamma^{t}\right)=-\int_{0}^{1}(V \cdot \boldsymbol{h}) d s, \quad \boldsymbol{h}:=\frac{\ddot{y} \dot{x}-\ddot{x} \dot{y}}{|\dot{\gamma}|^{3}}(-\dot{y}, \dot{x})$,
where V is the variational vector field of the variation $\left\{\gamma^{t}\right\}$ of the curve $\gamma(s)=(x(s), y(s))$.

[^0]: ${ }^{1}$ A map f defined on \bar{D} is said to be C^{∞} if there exists a open set \widetilde{D} containing \bar{D} and a $C^{\infty} \operatorname{map} \tilde{f}$ defined on \widetilde{D} such that $\left.\tilde{f}\right|_{\bar{D}}=f$.

