
1 Area minimizing surfaces

1.1 A review of surface theory.

Let D ⊂ R2 be a domain in the uv-plane and f : D → R3 an
immersion. We often refer to such an immersion as a surface.
Then the unit normal vector of f is given by (with ±-ambiguity)

(1.1) ν :=
fu × fv

|fu × fv| : D −→ S2 = {x ∈ R3 | |x| = 1} ⊂ R3,

where “×” denotes the vector product of R3. The first and the
second fundamental forms are defined as

(1.2)
ds2 = df · df = E du2 + 2F du dv + Gdv2,

II = −df · dν = Ldu2 + 2M dudv + N dv2,

where “·” denotes the canonical inner product of R3. Here,

E : = fu · fu, F : = fu · fv = fv · fu, G : = fv · fv,

L : = −fu · νu, M : = −fu · νv = −fv · νu, N : = −fv · νv

= fuu · ν, = fuv · ν, = fvv · ν

are called the entries of the first and the second fundamental
forms with respect to the parameters (u, v). The area of the
image of a compact region Ω ⊂ D is computed as

(1.3) A(Ω) :=

∫∫

Ω

dA =

∫∫

Ω

|fu × fv| du dv,
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where dA = |fu × fv| du dv=
√

EG − F 2 du dv is said to be the
area element of the surface.

The derivatives of ν is written as (the Weingarten Formula)

(1.4) νu = −A1
1fu − A2

1fv, νv = −A1
2fu − A2

2fv,

A :=

(
A1

1 A1
2

A2
1 A2

2

)
=

(
E F
F G

)−1 (
L M
M N

)
.

The matrix A is called the Weingarten matrix, and the determi-
nant K and the half H of the trace of A are called the Gaussian
curvature and the mean curvature, respectively:

(1.5) K := det A =
LN − M2

EG − F 2
, H :=

1

2
tr A =

A1
1 + A2

2

2
.

1.2 Area minimizing surfaces.

The purpose of this section is to show the following fact:

For a given simple closed curve C in R3, the surface
which minimizing area among all surfaces bounded
by C is a surface whose mean curvature vanishes
identically.

Setting up. As the description of the above fact is rather
intuituive, we will formulate the problem.

Let C be a simple closed smooth curve in R3 and set

(1.6) SC :=

{
f : D → R3 ;

f is a C∞-immersion
f(∂D) = C

}
,
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where D (resp. D) is the open (resp. closed) unit disc and ∂D
is its boundary:1

(1.7) D := D ∪ ∂D, D : = {(u, v) ∈ R2 ; u2 + v2 < 1},

∂D : = {(u, v) ∈ R2 ; u2 + v2 = 1}
= {(cos θ, sin θ) ; θ ∈ R}.

Roughly speaking, SC is “the set of the surfaces bounded by
C”. Then we set the area functional as

(1.8) A : SC ∋ f 7−→ A(f) =

∫∫

D

|fu × fv| du dv.

Using these notations, our result can be stated as the following:

Theorem 1.1. If a surface f ∈ SC attains the minimum of the
area functional A, the mean curvature of f vanishes identically.

Taking this fact into account, we define

Definition 1.2. A surface whose mean curvature vanishes iden-
tically is said to be minimal.

Remark 1.3. As Theorem 1.1 is a necessary condition for the
minimizer, a minimal surface is not necessarily a minimizer of
the area functional.

1A map f defined on D is said to be C∞ if there exists a open set D̃
containing D and a C∞ map f̃ defined on D̃ such that f̃ |D = f .
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Variations of surfaces. To show Theorem 1.1, we want to
“differentiate” the functional A.

Definition 1.4. For a surface f ∈ SC , a variation (fixing the
boundary) of f is a C∞-map

F : D × (−ε, ε) ∋ (u, v; t) 7−→ f t(u, v) := F(u, v; t) ∈ R3

such that f0 = f and f t ∈ SC for each t ∈ (−ε, ε), where ε is a
positive number. The vector-valued function

(1.9) V (u, v) :=
∂

∂t

∣∣∣∣
t=0

f t(u, v)

is called the variational vector field of the variation F .

Lemma 1.5. For a variation F = {f t} of f ∈ Sc with varia-
tional vector field V , it holds that

d

dθ
f(cos θ, sin θ) × V (cos θ, sin θ) = 0.

Proof. Since (cos θ, sin θ) is a parametrization of ∂D, γt(θ) :=
f t(cos θ, sin θ) ∈ C for all t and θ. Thus, two vectors in the left-
hand side of the first assertion are both tangent to C, proving
the lemma.

The first variation formula.

Theorem 1.6. Let F = {f t} be a variation of f ∈ SC with
variational vector field V . Then it holds that

(1.10)
d

dt

∣∣∣∣
t=0

A(f t) = −2

∫∫

D

H
(
V · ν

)
dA,
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where H, ν and dA are the mean curvature, the unit normal
vector and the area element of f , respectively.

Proof. By the definition of the area (1.3), we have

(∗) : =
d

dt

∣∣∣∣
t=0

A(f t) =
d

dt

∣∣∣∣
t=0

∫∫

D

|f t
u × f t

v| du dv

=

∫∫

D

∂

∂t

∣∣∣∣
t=0

|f t
u × f t

v| du dv

=

∫∫

D

(
Vu × fv + fu × Vv

)
· (fu × fv)

|fu × fv| du dv

=

∫∫

D

(
Vu × fv + fu × Vv

)
· ν du dv

=

∫∫

D

((
Vu × fv

)
· ν +

(
fu × Vv

)
· ν

)
du dv.

Here, by the formula of scalar triple product

(a × b) · c = (b × c) · a = (c × a) · b = det(a, b, c),

we have

(∗) =

∫∫

D

((
ν × fv

)
· Vu +

(
fu × ν

)
· Vv

)
du dv

= (I) − (II),

(I) : =

∫∫

D

[((
ν × fv

)
· V

)
u

+
((

fu × ν
)

· V
)
v

]
du dv,

(II) : =

∫∫

D

[((
ν × fv

)
u

· V
)

+
(
fu × ν

)
v

· V
))]

du dv.
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By the Green-Stokes formula, (I) is computed as

(I) =

∫∫

D

[((
ν × fv

)
· V

)
u

−
((

ν × fu

)
· V

)
v

]
du dv,

=

∫

∂D

ν ·
((

fu du + fv dv
)

× V
)

=

∫ π

−π

ν ·
(

d

dθ
f(cos θ, sin θ) × V (cos θ, sin θ)

)
dθ = 0.

Here, the last assertion is obtained by Lemma 1.5. On the other
hand, using the Weingarten formula (1.4), (II) is computed as

(II) : =

∫∫

D

[(
νu × fv

)
· V +

(
ν × fvu

)
· V

+
(
fuv × ν

)
· V +

(
fu × νv

)
· V

]
du dv

=

∫∫

D

[(
νu × fv

)
· V +

(
fu × νv

)
· V

]
du dv

= −
∫∫

D

[(
(A1

1fu + A2
1fv) × fv

)
· V

+
(
fu × (A1

2fu + A2
2fv)

)
· V

]
du dv

= −
∫∫

D

(A1
1 + A2

2)(fu × fv) · V du dv

= −
∫∫

D

2H(ν · V )|fu × fv| du dv

Proof of Theorem 1.1. We need the following “the funda-
mental lemma for calculus of variations”.
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Lemma 1.7. Assume a smooth function h : D → R satisifes

∫∫

D

h(u, v)φ(u, v) du dv = 0

for all C∞-function with φ|∂D = 0. Then h = 0 on D.

Proof. Assume h(u0, v0) > 0 (resp. < 0)((u0, v0) ∈ D). By a
continuity, there exists ε > 0 such that h(u, v) > − on an ε-ball
B := Bε(u0, v0) centered at (u0, v0). Let φ be a non-negative
C∞-function on D such that φ > 0 on B and 0 on D \ B. Then

∫∫

D

hφdu dv =

∫∫

B

h φdu dv > 0 (resp. < 0),

a contradiction.

Proof of Theorem 1.6. Assume f ∈ SC minimizes the area. Then
for any variation F = {f t} of f , A(f t) is not less than A(f) =
A(f0). Then by Theorem 1.6, it holds that

0 =
d

dt

∣∣∣∣
t=0

A(f t) = −2

∫

D

H(V · ν)|fu × fv| du dv.

Let φ be a C∞-function on D with φ|∂D = 0. Then f t := f+tφν
is a variation of f with variational vector field V = φν. Thus,

∫∫
H|fu × fv|φ = 0.

Since φ is arbitrary, Lemma 1.7 yields the conclusion.
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Exercises

1-1H For P, Q ∈ R2, set

CP,Q :=

{
γ : [0, 1] → R2;

γ is a regular curve

γ(0) = P, γ(1) = Q

}
,

and denote by L the length functional:

L(γ) :=

∫ 1

0

|γ̇(s)| ds

(
˙ =

d

ds

)

A variation of a curve γ ∈ CP,Q is a C∞-map

Γ : [0, 1] × (−ε, ε) → γt(s) = Γ (s, t) ∈ R2

such that γt ∈ CP,Q for each t ∈ (−ε, ε) and γ0 = γ.

Then show the first variation formula for the length func-
tional

d

dt

∣∣∣∣
t=0

L(γt) = −
∫ 1

0

(V · h) ds, h :=
ÿẋ − ẍẏ

|γ̇|3 (−ẏ, ẋ),

where V is the variational vector field of the variation {γt}
of the curve γ(s) = (x(s), y(s)).


