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4 Bernstein’s Theorem
More complex analysis.

Theorem 4.1 (Liouville’s theroem). A bounded holomorphic
function defined on the whole complex plane C s constant.

Proof. Let f: C — C be a holomorphic function such that
|f(z)] £ M for every z € C. Fix a point z € C. Then by
Cauchy’s integral formula, it holds that

o O Z.
f@zm/cﬁ,(z(_)oz (Cr:¢=z+Re"—m <6=m)

where R is an arbitrary positive number. Hence

/ 1 £ ()] 1dd]|

|f(2)§277\/03 |Z—C|2
_ 1 [ M| 1 [TMRd§ M
o lia )l ® T

Since R is arbitrary, we can conclude f’(z) = 0 by letting R —
0o. Moreover, since z is arbitrary, f'(z) = 0 holds on C, proving
that f is constant. O

Corollary 4.2. A holomorphic function defined on C into the
upper-half plane H = {z € C| Im z > 0} must be constant.

15. July, 2016.
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Proof. Note that a linear fractional transformation

P =2 G=vD)

maps the upper-half plane H to the unit disc D = {w € C||w| <
1} bijectively. Then for each holomorphic function f: C — H,
F o f is a bounded holomorphic function defend on C. O

Conformal minimal surfaces. Let f: ¥ — R? be an im-
mersion, where X is an orientable 2-dimensional manifold. As
seen in Corollary 3.11, there exists a structure of Riemann sur-
face such that each complex coordinate z = w + iv gives an
isothermal coordinate system.

Definition 4.3. Animmersion f: ¥ — R3 of a Riemann surface
3 is said to be conformal if each complex coordinate z = u + v
is isothermal.

In this section, we consider conformal minimal immersions
f: X — R3. Then by virtue of Proposition , and Lemma 3.4,

of (L [of Of\)\ .
(4.1) ‘z"az(z(auﬂm))'z_)@

is holomorphic for each complex coordinate z = w + iv of X.
Moreover, we have

Proposition 4.4. Let f: ¥ — R? be a conformal minimal im-
mersion. Then for each complex coordinate chart (U; z = u+iv)
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of &, ¢ in (4.1) satisfies

(4.2) (¢1)? + (¢2)* + (¢3)* = 0,
(4.3) [¢11% + |p2]® + |ps|* > 0,

where we write ¢ = (¢1, ¢, d3).
Proof. Since ¢ = (1/2)(fu — ifo),

(6062 + (65 = 6+ 6= 1 (fu- fu— Fo- fo—2ifu 1)
1
~ i

(E—@)—2iF) =0,

where FE, F and G are the components of the first fundamental
form ds? = Edu® + 2F dudv + G dv? = E(du? + dv?). Then
(4.2) follows. On the other hand,

-1
|¢1|2+|¢2|2 + |¢3|2 = ¢ . QS = Z(fu . fu =+ fv . fv)
1 E
= — E —
4( +G) 5 > 0,
proving (4.3). O
Bernstein’s Theorem We prove the following global result

of minimal surfaces:

Theorem 4.5 (Bernstein, 1915). Let p: R? — R be a smooth
function defined on the whole plane R2, and assume the graph of
@ is minimal surface. Then p(x,y) is a linear function in (z,y).
In other words, the only entire minimal graphs are planes.
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Proof. Let ¢: R? — R be a solution of the minimal surface
equation

(4.4) (1+ 905)801:5 — 2020y Pay + (1 + @i)@yy = 0.

Then there exists functions £ and 7 satisfying

1+ 2 PPy
4. d¢ = (1 z)d d
(4.5) £(+W>w+wy,
. 1+ 2

where W = /1 + ¢2 + ¢2. Moreover, by Proposition 3.13, we

know that the map
R* > (z,y) — (1) € R?
is a diffeomorphism and

f:C3¢i=E4in— (x(&m),y(&m), o(z(&,n), y(&n))) € R?,

is a conformal reparametrization of the graph of . We let ¢ as
in (4.1):

of  (0x Oy Oy

¢Z(¢17¢27¢3):87C7 (maacaag), (C:§+Z77)
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Since

(A7) 41m ($16,) = 4Tm(xcF) = Im(ze — i) (v + ivy)

x & &\
=x z, = det T) =det|>* >Y
& = Vet <y5 yn) (nx ny)

1+ @2 L+or\  ies
= (14— (1 TN I T
() (15 58) -

both ¢, and ¢2 never vanish, and

I _
Im [ m¢12¢2 >0
¢2 |

Then we have a holomorphic map of C into the upper half plane

i} :C— H.

b2
Hence by Liouville’s Theorem 4.1, we conclude that

0 Jy

(4.8) é1 =ags,  thatis a% = aa? (a € C\ {0}).

Moreover, by (4.7), we have
(4.9) Im(¢1 o) = Im(algo|?) >0, thatis, Ima > 0.
By (4.8), and noticing x and y are real valued functions, we have

or Oz oy y
—_— = = Qa .

Sect. 4 (20160715) 30

Then, if we set w = x + 1y,

6w_@+ 9y = (a+ )8y ow _ @_ Oy _ (d—i)@
a¢ a9 ac’ ac o 'a¢ a¢
hold. We set

(4.10) q:=q(¢) = (a+i)wt(ati)w, (w(C)=z(¢)+iy(()).
Then we have

9q dy _
= =0,
S+ (i@ i3
that is, ( — ¢ is a holomorphic function. If we write ¢ = u + v
and a = s + it, we have

(4.11) (Z‘) - (g :52) (z) (t = Tma > 0).

that is,  and y are linear functions of u and v.
By holomorphicity of w, (u,v) is also an isothermal param-
eter of the surface. We set

= (—a+i)(a+i)==

S dr Ay 0
¢: (¢17¢23¢3) = (£7£7£> .

Since z and y are linear functions of u and v, ¢; and ¢, are con-
stants. On the other hand, since w is an isothermal (complex)
parameter, (4.2) holds for ¢:

ng = —q@% - gzgg = constant.
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Therefore, the third coordinate z is also a liner function of u
and v. Hence

2(u,v) = p(@(u, v),y(u,v))
is a liner function in (u,v). Thus, by (4.11), ¢(x,y) is a linear

function. O
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FEzxercises

Solve one of the following problems:

4-1" Let f: C ¢ U — R? be a conformal minimal immersion
and set ¢ = (¢1, 2, ¢3) as (4.1). Show that

(1) the first fundamental form of f is expressed as

ds* = €27 (du® + dv?),

where €7 = 2(|¢1|* + |p2|* + |03]?),

(2) the unit normal vector field v is expressed as

_ fux Sy
|fu X fv|
_ —i(P203 — P32, 301 — 103, P12 — P20h1)
|12 + 2] + |¢3]2 7
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(3) and the composition of v: U — S? with the stereo-
graphic projection

171/3
108?25 (11,v9,13) — ——— € CU {0
(v1,v2,v3) A {oo}
is expressed as
rop—_ 93
b1 — i’

here z = u + v is the complex coordinate of U. (Hint:

@3 = —(d1 4+ i2) (1 — id2).)

4-2" Find a non-trivial (non-linear) solution ¢(x,y) of the par-
tial differential equation

(1- @12/)9090:8 + 2020y Puy + (1 — @i)‘ﬁyy =0,

which is defined on whole R? (Hint: Try a similar method
as in 2).



