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4 Bernstein’s Theorem

More complex analysis.

Theorem 4.1 (Liouville’s theroem). A bounded holomorphic
function defined on the whole complex plane C is constant.

Proof. Let f : C → C be a holomorphic function such that
|f(z)| ≦ M for every z ∈ C. Fix a point z ∈ C. Then by
Cauchy’s integral formula, it holds that

f ′(z) =
1

2πi

∫

CR

f(ζ) dζ

(z − ζ)2
(CR : ζ = z + Reiθ;−π < θ ≦ π),

where R is an arbitrary positive number. Hence

|f ′(z)| ≦ 1

2π

∫

CR

|f(ζ)| |dζ|
|z − ζ|2

≦ 1

2π

∫

CR

M |dζ|
|z − ζ|2 =

1

2π

∫ π

π

M R dθ

R2
=

M

R
.

Since R is arbitrary, we can conclude f ′(z) = 0 by letting R →
∞. Moreover, since z is arbitrary, f ′(z) = 0 holds on C, proving
that f is constant.

Corollary 4.2. A holomorphic function defined on C into the
upper-half plane H = {z ∈ C | Im z > 0} must be constant.
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Proof. Note that a linear fractional transformation

F (z) =
z − i

z + i
(i =

√
−1)

maps the upper-half plane H to the unit disc D = {w ∈ C | |w| <
1} bijectively. Then for each holomorphic function f : C → H,
F ◦ f is a bounded holomorphic function defend on C.

Conformal minimal surfaces. Let f : Σ → R3 be an im-
mersion, where Σ is an orientable 2-dimensional manifold. As
seen in Corollary 3.11, there exists a structure of Riemann sur-
face such that each complex coordinate z = u + iv gives an
isothermal coordinate system.

Definition 4.3. An immersion f : Σ → R3 of a Riemann surface
Σ is said to be conformal if each complex coordinate z = u + iv
is isothermal.

In this section, we consider conformal minimal immersions
f : Σ → R3. Then by virtue of Proposition , and Lemma 3.4,

(4.1) ϕ :=
∂f

∂z

(
=

1

2

(
∂f

∂u
− i

∂f

∂v

))
: Σ → C3

is holomorphic for each complex coordinate z = u + iv of Σ.
Moreover, we have

Proposition 4.4. Let f : Σ → R3 be a conformal minimal im-
mersion. Then for each complex coordinate chart (U ; z = u+iv)
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of Σ, ϕ in (4.1) satisfies

(ϕ1)
2 + (ϕ2)

2 + (ϕ3)
2 = 0,(4.2)

|ϕ1|2 + |ϕ2|2 + |ϕ3|2 > 0,(4.3)

where we write ϕ = (ϕ1, ϕ2, ϕ3).

Proof. Since ϕ = (1/2)(fu − ifv),

(ϕ1)
2+(ϕ2)

2 + (ϕ3)
2 = ϕ · ϕ =

1

4

(
fu · fu − fv · fv − 2ifu · fv

)

=
1

4

(
(E − G) − 2iF

)
= 0,

where E, F and G are the components of the first fundamental
form ds2 = E du2 + 2F du dv + Gdv2 = E(du2 + dv2). Then
(4.2) follows. On the other hand,

|ϕ1|2+|ϕ2|2 + |ϕ3|2 = ϕ · ϕ̄ =
1

4

(
fu · fu + fv · fv)

=
1

4
(E + G) =

E

2
> 0,

proving (4.3).

Bernstein’s Theorem We prove the following global result
of minimal surfaces:

Theorem 4.5 (Bernstein, 1915). Let φ : R2 → R be a smooth
function defined on the whole plane R2, and assume the graph of
φ is minimal surface. Then φ(x, y) is a linear function in (x, y).
In other words, the only entire minimal graphs are planes.
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Proof. Let φ : R2 → R be a solution of the minimal surface
equation

(4.4) (1 + φ2
y)φxx − 2φxφyφxy + (1 + φ2

x)φyy = 0.

Then there exists functions ξ and η satisfying

dξ =

(
1 +

1 + φ2
x

W

)
dx +

φxφy

W
dy,(4.5)

dη =
φxφy

W
dx +

(
1 +

1 + φ2
y

W

)
dy,(4.6)

where W =
√

1 + φ2
x + φ2

y. Moreover, by Proposition 3.13, we

know that the map

R2 ∋ (x, y) 7−→ (ξ, η) ∈ R2

is a diffeomorphism and

f : C ∋ ζ := ξ + iη 7−→
(
x(ξ, η), y(ξ, η), φ(x(ξ, η), y(ξ, η)

))
∈ R3,

is a conformal reparametrization of the graph of φ. We let ϕ as
in (4.1):

ϕ = (ϕ1, ϕ2, ϕ3) =
∂f

∂ζ
=

(
∂x

∂ζ
,
∂y

∂ζ
,
∂φ

∂ζ

)
, (ζ = ξ + iη).
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Since

4 Im
(
ϕ1ϕ2

)
= 4 Im

(
xζyζ

)
= Im(xξ − ixη)(yξ + iyη)(4.7)

= xξyη − yξxη = det

(
xξ xη

yξ yη

)
= det

(
ξx ξy

ηx ηy

)−1

=

(
1 +

1 + φ2
x

W

)(
1 +

1 + φ2
y

W

)
− φ2

xφ2
y

W 2
> 0,

both ϕ1 and ϕ2 never vanish, and

Im
ϕ1

ϕ2
=

Im ϕ1ϕ2

|ϕ2|2
> 0.

Then we have a holomorphic map of C into the upper half plane

ϕ1

ϕ2
: C −→ H.

Hence by Liouville’s Theorem 4.1, we conclude that

(4.8) ϕ1 = aϕ2, that is
∂x

∂ζ
= a

∂y

∂ζ
(a ∈ C \ {0}).

Moreover, by (4.7), we have

(4.9) Im(ϕ1ϕ2) = Im(a|ϕ2|2) > 0, that is, Im a > 0.

By (4.8), and noticing x and y are real valued functions, we have

∂x

∂ζ̄
=

∂x

∂ζ
= a

∂y

∂ζ
= ā

∂y

∂ζ̄
.
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Then, if we set w = x + iy,

∂w

∂ζ̄
=

∂x

∂ζ̄
+ i

∂y

∂ζ̄
= (ā + i)

∂y

∂ζ̄
,

∂w̄

∂ζ̄
=

∂x

∂ζ̄
− i

∂y

∂ζ̄
= (ā − i)

∂y

∂ζ̄

hold. We set

(4.10) q := q(ζ) = (−ā+i)w+(ā+i)w̄,
(
w(ζ) = x(ζ)+iy(ζ)

)
.

Then we have

∂q

∂ζ̄
= (−ā + i)(ā + i)

∂y

∂ζ̄
+ (ā + i)(ā − i)

∂y

∂ζ̄
= 0,

that is, ζ 7→ q is a holomorphic function. If we write q = u + iv
and a = s + it, we have

(4.11)

(
u
v

)
=

(
0 −2t
2 −2s

)(
x
y

)
(t = Im a > 0).

that is, x and y are linear functions of u and v.
By holomorphicity of w, (u, v) is also an isothermal param-

eter of the surface. We set

ϕ̃ = (ϕ̃1, ϕ̃2, ϕ̃3) :=

(
∂x

∂w
,

∂y

∂w
,

∂z

∂w

)
.

Since x and y are linear functions of u and v, ϕ̃1 and ϕ̃2 are con-
stants. On the other hand, since w is an isothermal (complex)
parameter, (4.2) holds for ϕ̃:

ϕ̃2
3 = −ϕ̃2

1 − ϕ̃2
2 = constant.
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Therefore, the third coordinate z is also a liner function of u
and v. Hence

z(u, v) = φ
(
x(u, v), y(u, v)

)

is a liner function in (u, v). Thus, by (4.11), φ(x, y) is a linear
function.
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Exercises

Solve one of the following problems:

4-1H Let f : C ⊂ U → R3 be a conformal minimal immersion
and set ϕ = (ϕ1, ϕ2, ϕ3) as (4.1). Show that

(1) the first fundamental form of f is expressed as

ds2 = e2σ(du2 + dv2),

where e2σ = 2(|ϕ1|2 + |ϕ2|2 + |ϕ3|2),

(2) the unit normal vector field ν is expressed as

ν =
fu × fv

|fu × fv|

=
−i(ϕ2ϕ3 − ϕ3ϕ2, ϕ3ϕ1 − ϕ1ϕ3, ϕ1ϕ2 − ϕ2ϕ1)

|ϕ1|2 + |ϕ2|2 + |ϕ3|2
,
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(3) and the composition of ν : U → S2 with the stereo-
graphic projection

π ◦ S2 ∋ (ν1, ν2, ν3) 7−→ 1 − ν3

ν1 + iν2
∈ C ∪ {∞}

is expressed as

π ◦ ν =
ϕ3

ϕ1 − iϕ2
,

here z = u + iv is the complex coordinate of U . (Hint:
ϕ2

3 = −(ϕ1 + iϕ2)(ϕ1 − iϕ2).)

4-2H Find a non-trivial (non-linear) solution φ(x, y) of the par-
tial differential equation

(1 − φ2
y)φxx + 2φxφyφxy + (1 − φ2

x)φyy = 0,

which is defined on whole R2 (Hint: Try a similar method
as in 2).


