6 Further Example

Completeness and finiteness of topology It is well-known that that there exist no compact minimal surfaces without boundaries. So to investigate global properties of minimal surfaces, we need a notion of completeness as follows: A Riemannian 2manifold $\left(M^{2}, d s^{2}\right)$ is said to be complete if all divergent paths have finite length. Here, a path $\gamma:[0, \infty) \rightarrow M^{2}$ is divergent, if, for each compact set $K \subset M^{2}$, there exists a positive number m such that $\gamma([m,+\infty)) \subset M^{2} \backslash K$.

One can check that the plane, the catenoid (Examples 5.13 and 2.4), the helicoid (Examples 5.12 and 2.6) (and Examples in Sections 2 and 5) are complete.

The following result is known (Osserman [6-3]):
Fact 6.1 (Osserman, 1961). Let $f: M^{2} \rightarrow \mathbb{R}^{3}$ be a complete minimal immersion of an orientable manifold M^{2} with finite total curvature. Then there exists a compact Riemann surface \bar{M}^{2} and finite number of points $\left\{p_{1}, \ldots, p_{n}\right\}$ such that M^{2} (with complex structure induced by the first fundamental form) is biholomorphic to $\bar{M}^{2} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

Here, the total curvature of the minimal surface $f: M^{2} \rightarrow$ \mathbb{R}^{3} is the integral of the Gaussian curvature K : $\mathrm{TC}(f):=$ $\int_{M^{2}} K d A$. Since K is non-negative for minimal surfaces, $\mathrm{TC}(f)$ is valued on $[-\infty, 0]$.

Scherk's surface (Example 2.2; extended to the doubly periodic surface), and the helicoid are complete but not of finite

[^0]

Figure 4: The Jorge-Meeks surface for $n=3$.
total curvature. On the other hand, the total curvature of the catenoid is -4π, which is finite. Moreover, the Jorge-Meeks surface (Example 5.16) has total curvature $-4(n-1) \pi$.

Embeddedness of minimal surfaces is also important global property. Scherk's surface, the catenoid and the helicoid are embedded, but the Jorge-Meeks surfaces for $n \geqq 3$ are notembedded (Figure 4).

Costa's example In this section, we introduce an example of compact embedded minimal surface with finite total curvature, firstly discovered by Costa [6-1].

Domain and the Weierstrass data Take a holomorphic function of two variables $F(z, w):=w^{2}-z\left(z^{2}-1\right)$ and set

$$
\text { (6.1) } \quad M_{0}:=\left\{(z, w) \in \mathbb{C}^{2} ; w^{2}=z\left(z^{2}-1\right)\right\}=F^{-1}(\{(0,0)\}) \text {. }
$$

Since $\left(F_{z}, F_{w}\right) \neq(0,0), M_{0}$ is a complex submanifold of \mathbb{C}^{2}, by the (complex) implicit function theorem, and it is homeomorphic to a torus with one point excluded. The functions z and w are holomorphic on M_{0}. Since for each $z \neq 0, \pm 1$, there exists exactly two w 's satisfying $F(z, w)=0, M_{0}$ is a branched double cover of the Riemann sphere $\mathbb{C} \cup\{\infty\} .{ }^{5}$ We set
(6.2) $\quad M^{2}:=M_{0} \backslash\{(\pm 1,0)\}, \quad g:=\frac{\alpha}{w}, \quad \omega:=\frac{z d z}{w}$,
where α is a positive constant defined later. Then one can easily check that (4.3) for ϕ holds on M^{2}. We prove the following

Proposition 6.2 (Costa). The Weierstrass data (g, ω) induces a minimal immersion of M^{2} into \mathbb{R}^{2}.

To show this, it is sufficient to show that

$$
\begin{equation*}
\int_{\gamma} \hat{\phi} \in i \mathbb{R}^{3} \tag{6.3}
\end{equation*}
$$

holds for all loops γ on M_{0}, where (cf. Proposition 5.14).

$$
\hat{\phi}=\left(\hat{\phi}_{1}, \hat{\phi}_{2}, \hat{\phi}_{3}\right):=\left(1-g^{2}, i\left(1+g^{2}\right), 2 g\right) \omega .
$$

Moreover, by Cauchy's theorem on complex integration, we only have to show (6.3) for generators of the fundamental group of M_{0}. Let $\beta_{ \pm 1}, \beta_{\infty}$ and γ_{1} and γ_{2} be loops as in Figure 5. Then these loops generates the fundamental group of M^{2}. We shall prove (6.3) for these loops.

[^1]Figure 5:

Remark that since $w^{2}=z\left(z^{2}-1\right)$ holds on M_{0}, we have

$$
\hat{\phi}_{3}=2 g \omega=\frac{2 \alpha z d z}{w^{2}}=\frac{2 \alpha d z}{z^{2}-1}=d\left(\alpha \log \frac{z-1}{z+1}\right)
$$

and so

$$
\operatorname{Re} \int \hat{\phi}_{3}=\alpha \log \left|\frac{z-1}{z+1}\right|
$$

which is well-defined on M^{2}, that is, (6.3) holds for an arbitrary loop γ. Thus, we only consider the periods for $\hat{\phi}_{1}$ and $\hat{\phi}_{2}$.

The period about $\beta_{ \pm 1}$. Since $F_{z}(\pm 1,0) \neq 0, w$ is a local complex coordinate near $(\pm 1,0)$, and

$$
d F=2 w d w-\left(3 z^{2}-1\right) d z=0
$$

holds on M_{0}. Thus, we have

$$
\omega=\frac{z d z}{w}=\frac{2 z d w}{3 z^{2}-1}
$$

that is, ω is holomorphic at $(\pm 1,0)$. On the other hand,

$$
g^{2} \omega=\frac{2 \alpha^{2} z d z}{w^{3}}=\frac{2 \alpha^{2} z}{3 z^{2}-1} \frac{d w}{w^{2}}
$$

that is, $g^{2} \omega$ has a pole of order 2 at $(z, w)=(\pm 1,0)$. Moreover,

$$
\frac{d}{d w} \frac{z}{3 z^{2}-1}=\frac{d z}{d w} \frac{d}{d z} \frac{z}{3 z^{2}-1}=\frac{2 w}{3 z^{2}-1} \frac{-2\left(3 z^{2}+1\right)}{\left(3 z^{2}-2\right)}
$$

Hence the residue of $g^{2} \omega$ at $(z, w)=(\pm 1,0)$ vanishes.
Hence the integrals of $\hat{\phi}_{1}$ and $\hat{\phi}_{2}$ along the loops $\beta_{ \pm 1}$ vanish.
The period about β_{∞}. The loop β_{∞} is considered as a loop surrounding $(z, w)=(\infty, \infty)$. We set $u=1 / z, v=1 / w$. Then the equation $F(z, w)=0$ is equivalent to

$$
G(u, v):=u^{3}-v^{2}\left(1-u^{2}\right)=0 .
$$

Unfortunately, the derivatives of G vanish at $(0,0)$. So we take (regularized) coordinate system (u, s) such that $v=s u$ (this procedure is known as blowing-up). Then

$$
\tilde{G}(u, s)=u-s^{2}\left(1-u^{2}\right)=0
$$

corresponds to the defining equation of M_{0}. Using these coordinates, the Weierstrass data can be rewritten as

$$
g=\frac{\alpha u}{s}, \quad \omega=\frac{z d z}{w}=\frac{u}{s} \frac{1}{u} d\left(\frac{1}{u}\right)=-\frac{s d u}{u^{2}} .
$$

Hence by the relations

$$
s=\frac{u}{1-u^{2}}, \quad 2 s d s=d\left(\frac{u}{1-u^{2}}\right)=\frac{u^{2}+1}{\left(u^{2}-1\right)^{2}} d u
$$

we have

$$
\omega=\frac{-2 d s}{s^{2}\left(1+u^{2}\right)}, \quad g^{2} \omega=\frac{-2 \alpha^{2} d s}{\left(1+u^{2}\right)\left(1-u^{2}\right)^{2}}
$$

Hence $g^{2} \omega$ is holomorphic and ω has a pole of order 2 at $(0,0)$. By the similar way as the case at $z= \pm 1$, we can compute that the residue of ω vanish at $s=0$. Hence the integrals of ϕ_{j} $(j=1,2)$ along β_{∞} vanish.

The period along γ_{1}. Consider the loop $\gamma_{1}=\gamma_{1}^{+} \cup \gamma_{1}^{-}$. Since ω is holomorphic on a neighborhood of γ_{1}, its integral along $\gamma_{1}^{ \pm}$reduces to

$$
\begin{equation*}
\int_{\gamma_{1}^{ \pm}}=\int_{0}^{1} \frac{d t}{\sqrt{t\left(1-t^{2}\right)}}=: A>0 \tag{6.4}
\end{equation*}
$$

On the other hand, $g^{2} \omega$ has a pole of order 2 at $(z, w)=(-1,0)$, and the integration along the interval $[-1,0]$ diverges. So we consider a loop $z=-1 / 2+r e^{i \theta}$ on the z-plane. Then

$$
\int_{\gamma_{1}^{+}} g^{2} \omega=\alpha^{2} B_{r}, \quad \int_{\gamma_{1}^{-}} g^{2} \omega=\alpha^{2} \overline{B_{r}},
$$

where

$$
B_{r}:=\int_{0}^{\pi} \frac{i r e^{i \theta} d \theta}{\left(z^{2}-1\right) \sqrt{z(z-1)(z+1)}} \quad\left(z=-\frac{1}{2}+r e^{i \theta}\right)
$$

Since integration along γ_{1} does not depend on a choice of $r \in$ $\left(\frac{1}{2}, 1\right)$, we can set
(6.5) $\quad B:=\operatorname{Re} B_{r}=\operatorname{Re} \int_{0}^{\pi} \frac{i e^{i \theta} d \theta}{\sqrt{z}{\sqrt{z^{2}-1}}^{3}} \quad\left(z=-\frac{1}{2}+e^{i \theta}\right)$.

Moreover, one can check that $B>0$ hols. Hence, if we choose $\alpha=\sqrt{A / B}$, we have

$$
\int_{\gamma_{1}} \hat{\phi}_{1}=\int_{\gamma_{1}}\left(1-g^{2}\right) \omega=2\left(A-\alpha^{2} B\right)=0 .
$$

On the other hand,

$$
\int_{\gamma_{1}} \hat{\phi}_{2}=\int_{\gamma_{1}} i\left(1+g^{2}\right) \omega=2 i\left(A+\alpha^{2} B\right) \in i \mathbb{R}
$$

The period along γ_{2}. Consider a map $\mathbb{C}^{2} \ni(z, w) \mapsto$ $(-z, i w) \in \mathbb{C}^{2}$, which induces an automorphism of the torus M_{0}. This morphism maps the loop γ_{1} to γ_{2}, and $(g, \omega) \mapsto(-i g,-i \omega)$. Thus, we have

$$
\int_{\gamma_{2}} \hat{\phi}_{1}=-2 i\left(A+\alpha^{2} B\right), \quad \int_{\gamma_{2}} \hat{\phi}_{2}=2\left(A-\alpha^{2} B\right)=0
$$

Hence (6.3) is accomplished, and Proposition ?? is proven.
The minimal surface we have obtained such a way is called Costa's surface. Costa's surface is a complete, embedded minimal surface of genus 1, with 3 ends, whose total curvature is -12π.

Figure 6: Costa's surface

References

[6-1] C. J. Costa, Example of a complete minimal immersion in \mathbb{R}^{3} of genus one and three embedded ends, Bol. Soc. Brasil. Mat. 15 (1984), 47-54.
[6-2] D. Hoffman and W. MeeksIII, Embedded minimal surfaces of finite topology. Ann. of Math. (2) 131 (1990), 1-34
[6-3] R. Osserman, A survey of minimal surfaces, Dover Publ.

Exercises

6-1 ${ }^{\mathrm{H}}$ Show that the third coordinate of Costa's surface is bounded as $(z, w) \rightarrow(\infty, \infty)$.

[^0]: 29. July, 2016.
[^1]: ${ }^{5}$ Such a double cover of the sphere is called a hyperelliptic curve.

