41 (20160722) Sect. 6

6 Further Example

Completeness and finiteness of topology It is well-known
that that there exist no compact minimal surfaces without bound-
aries. So to investigate global properties of minimal surfaces,
we need a notion of completeness as follows: A Riemannian 2-
manifold (M?,ds?) is said to be complete if all divergent paths
have finite length. Here, a path v: [0,00) — M? is divergent, if,
for each compact set K C M?, there exists a positive number
m such that y([m, +00)) C M?\ K.

One can check that the plane, the catenoid (Examples 5.13
and 2.4), the helicoid (Examples 5.12 and 2.6) (and Examples
in Sections 2 and 5) are complete.

The following result is known (Osserman [6-3]):

Fact 6.1 (Osserman, 1961). Let f: M? — R3 be a complete
minimal immersion of an orientable manifold M? with finite
total curvature. Then there exists a compact Riemann surface
M and finite number of points {p1,...,pn} such that M? (with
complex structure induced by the first fundamental form) is bi-

holomorphic to M \{p1,---,pn}-

Here, the total curvature of the minimal surface f: M? —
R? is the integral of the Gaussian curvature K: TC(f) :=
/ a2 I dA. Since K is non-negative for minimal surfaces, TC(f)
is valued on [—o0, 0].

Scherk’s surface (Example 2.2; extended to the doubly pe-
riodic surface), and the helicoid are complete but not of finite
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Figure 4: The Jorge-Meeks surface for n = 3.

total curvature. On the other hand, the total curvature of the
catenoid is —4m, which is finite. Moreover, the Jorge-Meeks
surface (Example 5.16) has total curvature —4(n — 1)m.

Embeddedness of minimal surfaces is also important global
property. Scherk’s surface, the catenoid and the helicoid are
embedded, but the Jorge-Meeks surfaces for n > 3 are not-
embedded (Figure 4).

Costa’s example In this section, we introduce an example of
compact embedded minimal surface with finite total curvature,
firstly discovered by Costa [6-1].

Domain and the Weierstrass data Take a holomorphic
function of two variables F(z,w) := w? — z(2% — 1) and set

(6.1) My :={(z,w) € C*; w? = 2(2* — 1)} = F~1({(0,0)}).
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Since (F, F,,) # (0,0), My is a complex submanifold of C2, by
the (complex) implicit function theorem, and it is homeomor-
phic to a torus with one point excluded. The functions z and w
are holomorphic on Mj. Since for each z # 0, +1, there exists
exactly two w’s satisfying F'(z,w) = 0, My is a branched double
cover of the Riemann sphere C U {c0}.5 We set

dz
2 M? .= M, +1 = i w = zaz
(6 ) 0\{( 70)}7 g w’ w

where « is a positive constant defined later. Then one can easily
check that (4.3) for ¢ holds on M?2. We prove the following

Proposition 6.2 (Costa). The Weierstrass data (g,w) induces
a minimal immersion of M? into R?.

To show this, it is sufficient to show that
(6.3) / b € iR?
¥
holds for all loops v on My, where (cf. Proposition 5.14).

b= (¢1, P2, 93) == (1-g%i(1+¢%),29)w.

Moreover, by Cauchy’s theorem on complex integration, we only
have to show (6.3) for generators of the fundamental group of
My. Let 41, B and 71 and o be loops as in Figure 5. Then
these loops generates the fundamental group of M?2. We shall
prove (6.3) for these loops.

5Such a double cover of the sphere is called a hyperelliptic curve.
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Figure 5:

Remark that since w? = z(2% — 1) holds on My, we have

N 20z dz 2 dz z—1
¢3 gw ’U}2 2271 <O[ ng+1)7
and so )
. -
R =alog |——|,
o b=t |

which is well-defined on M2, that is, (6.3) holds for an arbitrary
loop 7. Thus, we only consider the periods for ¢; and ¢,.

The period about 51;. Since F,(+1,0) # 0, w is a local
complex coordinate near (£1,0), and

dF =2wdw — (32> —1)dz =0
holds on M. Thus, we have
zdz 2z dw

w  322-1
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that is, w is holomorphic at (£1,0). On the other hand,

9 202 zdz 202z dw
g w=

w3 322 —1w?’

that is, g?w has a pole of order 2 at (z,w) = (+1,0). Moreover,

d z dzd z 2w —2(322 +1)
dw3z2—1 dwdz322—-1  322—-1 (322 -2)

Hence the residue of g?w at (z,w) = (£1,0) vanishes.

Hence the integrals of qgl and ¢, along the loops $+1 vanish.

The period about S,,. The loop B is considered as a
loop surrounding (z,w) = (00,00). We set u = 1/z, v = 1/w.
Then the equation F(z,w) = 0 is equivalent to

G(u,v) == u® —v*(1 —u?) = 0.

Unfortunately, the derivatives of G vanish at (0,0). So we take
(regularized) coordinate system (u,s) such that v = su (this
procedure is known as blowing-up). Then

Gu,s) =u—s*(1—u?) =0

corresponds to the defining equation of My. Using these coor-
dinates, the Weierstrass data can be rewritten as

gzi, w=—=

au zdz Eld 1 sdu
s w su

u
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Hence by the relations

U u u? +1
S:m7 28d8:d<1—u2>:(u2—1)2du7
we have
—2ds 9 —2a?ds
[ = — w = .
21+w?)’ YT v -2

Hence g%w is holomorphic and w has a pole of order 2 at (0,0).
By the similar way as the case at z = +1, we can compute that
the residue of w vanish at s = 0. Hence the integrals of (ﬁj
(j = 1,2) along B vanish.

The period along ;. Consider the loop v = 'yfr Uy -
Since w is holomorphic on a neighborhood of 77, its integral
along fyf[ reduces to

! dt
(6.4) / = —— =1A>0
Vi 0 t(l - tz)

On the other hand, g?w has a pole of order 2 at (z,w) = (—1,0),
and the integration along the interval [—1,0] diverges. So we
consider a loop z = —1/2 + re'® on the z-plane. Then

/ w = o?B,, / w = B,
vy oy

where

™ - 10
B = / ire*” df (Z _ 1 +r€1'0) _
0 (22=1)z(z=1)(2+1) 2
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Since integration along ; does not depend on a choice of r €
(3,1), we can set

T et do 1,
(6.5) B:= ReBr:Re/ ze—3 <z:——+e“9>.

0 2vz22 -1 2
Moreover, one can check that B > 0 hols. Hence, if we choose

a =+/A/B, we have

/%ésl:Ll<1—g2>w=2<A—a23>=o-

On the other hand,
[
71

The period along 72. Consider a map C? > (z,w) —
(—z,iw) € C?, which induces an automorphism of the torus M.
This morphism maps the loop 1 to v2, and (g, w) — (—ig, —iw).
Thus, we have

/ i(1+ ¢Hw = 2i(A+ o®B) € iR.
Y1

b1 = —2i(A+ a’B), / ¢y =2(A—a’B) =0.
Y2

Y2

Hence (6.3) is accomplished, and Proposition ?? is proven.

The minimal surface we have obtained such a way is called
Costa’s surface. Costa’s surface is a complete, embedded min-
imal surface of genus 1, with 3 ends, whose total curvature is
—12m.
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Figure 6: Costa’s surface
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Exercises

6-1" Show that the third coordinate of Costa’s surface is bounded
as (z,w) — (00, 00).



