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6 Further Example

Completeness and finiteness of topology It is well-known
that that there exist no compact minimal surfaces without bound-
aries. So to investigate global properties of minimal surfaces,
we need a notion of completeness as follows: A Riemannian 2-
manifold (M2, ds2) is said to be complete if all divergent paths
have finite length. Here, a path γ : [0,∞) → M2 is divergent, if,
for each compact set K ⊂ M2, there exists a positive number
m such that γ

(
[m, +∞)

)
⊂ M2 \ K.

One can check that the plane, the catenoid (Examples 5.13
and 2.4), the helicoid (Examples 5.12 and 2.6) (and Examples
in Sections 2 and 5) are complete.

The following result is known (Osserman [6-3]):

Fact 6.1 (Osserman, 1961). Let f : M2 → R3 be a complete
minimal immersion of an orientable manifold M2 with finite
total curvature. Then there exists a compact Riemann surface

M
2

and finite number of points {p1, . . . , pn} such that M2 (with
complex structure induced by the first fundamental form) is bi-

holomorphic to M
2 \ {p1, . . . , pn}.

Here, the total curvature of the minimal surface f : M2 →
R3 is the integral of the Gaussian curvature K: TC(f) :=∫

M2 K dA. Since K is non-negative for minimal surfaces, TC(f)
is valued on [−∞, 0].

Scherk’s surface (Example 2.2; extended to the doubly pe-
riodic surface), and the helicoid are complete but not of finite
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Figure 4: The Jorge-Meeks surface for n = 3.
.

total curvature. On the other hand, the total curvature of the
catenoid is −4π, which is finite. Moreover, the Jorge-Meeks
surface (Example 5.16) has total curvature −4(n − 1)π.

Embeddedness of minimal surfaces is also important global
property. Scherk’s surface, the catenoid and the helicoid are
embedded, but the Jorge-Meeks surfaces for n ≧ 3 are not-
embedded (Figure 4).

Costa’s example In this section, we introduce an example of
compact embedded minimal surface with finite total curvature,
firstly discovered by Costa [6-1].

Domain and the Weierstrass data Take a holomorphic
function of two variables F (z, w) := w2 − z(z2 − 1) and set

(6.1) M0 := {(z, w) ∈ C2 ; w2 = z(z2 − 1)} = F−1({(0, 0)}).
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Since (Fz, Fw) ̸= (0, 0), M0 is a complex submanifold of C2, by
the (complex) implicit function theorem, and it is homeomor-
phic to a torus with one point excluded. The functions z and w
are holomorphic on M0. Since for each z ̸= 0, ±1, there exists
exactly two w’s satisfying F (z, w) = 0, M0 is a branched double
cover of the Riemann sphere C ∪ {∞}.5 We set

(6.2) M2 := M0 \ {(±1, 0)}, g :=
α

w
, ω :=

z dz

w
,

where α is a positive constant defined later. Then one can easily
check that (4.3) for ϕ holds on M2. We prove the following

Proposition 6.2 (Costa). The Weierstrass data (g, ω) induces
a minimal immersion of M2 into R2.

To show this, it is sufficient to show that

(6.3)

∫

γ

ϕ̂ ∈ iR3

holds for all loops γ on M0, where (cf. Proposition 5.14).

ϕ̂ = (ϕ̂1, ϕ̂2, ϕ̂3) :=
(
1 − g2, i(1 + g2), 2g

)
ω.

Moreover, by Cauchy’s theorem on complex integration, we only
have to show (6.3) for generators of the fundamental group of
M0. Let β±1, β∞ and γ1 and γ2 be loops as in Figure 5. Then
these loops generates the fundamental group of M2. We shall
prove (6.3) for these loops.

5Such a double cover of the sphere is called a hyperelliptic curve.
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Figure 5:

Remark that since w2 = z(z2 − 1) holds on M0, we have

ϕ̂3 = 2gω =
2α z dz

w2
=

2α dz

z2 − 1
= d

(
α log

z − 1

z + 1

)
,

and so

Re

∫
ϕ̂3 = α log

∣∣∣∣
z − 1

z + 1

∣∣∣∣ ,

which is well-defined on M2, that is, (6.3) holds for an arbitrary

loop γ. Thus, we only consider the periods for ϕ̂1 and ϕ̂2.

The period about β±1. Since Fz(±1, 0) ̸= 0, w is a local
complex coordinate near (±1, 0), and

dF = 2w dw − (3z2 − 1) dz = 0

holds on M0. Thus, we have

ω =
z dz

w
=

2z dw

3z2 − 1
,
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that is, ω is holomorphic at (±1, 0). On the other hand,

g2ω =
2α2 z dz

w3
=

2α2 z

3z2 − 1

dw

w2
,

that is, g2ω has a pole of order 2 at (z, w) = (±1, 0). Moreover,

d

dw

z

3z2 − 1
=

dz

dw

d

dz

z

3z2 − 1
=

2w

3z2 − 1

−2(3z2 + 1)

(3z2 − 2)
.

Hence the residue of g2ω at (z, w) = (±1, 0) vanishes.

Hence the integrals of ϕ̂1 and ϕ̂2 along the loops β±1 vanish.

The period about β∞. The loop β∞ is considered as a
loop surrounding (z, w) = (∞, ∞). We set u = 1/z, v = 1/w.
Then the equation F (z, w) = 0 is equivalent to

G(u, v) := u3 − v2(1 − u2) = 0.

Unfortunately, the derivatives of G vanish at (0, 0). So we take
(regularized) coordinate system (u, s) such that v = su (this
procedure is known as blowing-up). Then

G̃(u, s) = u − s2(1 − u2) = 0

corresponds to the defining equation of M0. Using these coor-
dinates, the Weierstrass data can be rewritten as

g =
αu

s
, ω =

z dz

w
=

u

s

1

u
d

(
1

u

)
= −s du

u2
.
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Hence by the relations

s =
u

1 − u2
, 2s ds = d

(
u

1 − u2

)
=

u2 + 1

(u2 − 1)2
du,

we have

ω =
−2 ds

s2(1 + u2)
, g2ω =

−2α2 ds

(1 + u2)(1 − u2)2
.

Hence g2ω is holomorphic and ω has a pole of order 2 at (0, 0).
By the similar way as the case at z = ±1, we can compute that
the residue of ω vanish at s = 0. Hence the integrals of ϕ̂j

(j = 1, 2) along β∞ vanish.

The period along γ1. Consider the loop γ1 = γ+
1 ∪ γ−

1 .
Since ω is holomorphic on a neighborhood of γ1, its integral
along γ±

1 reduces to

(6.4)

∫

γ±
1

=

∫ 1

0

dt√
t(1 − t2)

=: A > 0

On the other hand, g2ω has a pole of order 2 at (z, w) = (−1, 0),
and the integration along the interval [−1, 0] diverges. So we
consider a loop z = −1/2 + reiθ on the z-plane. Then

∫

γ+
1

g2ω = α2Br,

∫

γ−
1

g2ω = α2Br,

where

Br :=

∫ π

0

ireiθ dθ

(z2 − 1)
√

z(z − 1)(z + 1)

(
z = −1

2
+ reiθ

)
.
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Since integration along γ1 does not depend on a choice of r ∈
( 1
2 , 1), we can set

(6.5) B := Re Br = Re

∫ π

0

ieiθ dθ
√

z
√

z2 − 1
3

(
z = −1

2
+ eiθ

)
.

Moreover, one can check that B > 0 hols. Hence, if we choose
α =

√
A/B, we have

∫

γ1

ϕ̂1 =

∫

γ1

(1 − g2)ω = 2(A − α2B) = 0.

On the other hand,
∫

γ1

ϕ̂2 =

∫

γ1

i(1 + g2)ω = 2i(A + α2B) ∈ iR.

The period along γ2. Consider a map C2 ∋ (z, w) 7→
(−z, iw) ∈ C2, which induces an automorphism of the torus M0.
This morphism maps the loop γ1 to γ2, and (g, ω) 7→ (−ig, −iω).
Thus, we have

∫

γ2

ϕ̂1 = −2i(A + α2B),

∫

γ2

ϕ̂2 = 2(A − α2B) = 0.

Hence (6.3) is accomplished, and Proposition ?? is proven.
The minimal surface we have obtained such a way is called

Costa’s surface. Costa’s surface is a complete, embedded min-
imal surface of genus 1, with 3 ends, whose total curvature is
−12π.
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Figure 6: Costa’s surface
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Exercises

6-1H Show that the third coordinate of Costa’s surface is bounded
as (z, w) → (∞, ∞).


