6 Further Example

Completeness and finiteness of topology It is well-known that that there exist no compact minimal surfaces without boundaries. So to investigate global properties of minimal surfaces, we need a notion of completeness as follows: A Riemannian 2-manifold (M^2, ds^2) is said to be *complete* if all divergent paths have finite length. Here, a path $\gamma: [0, \infty) \to M^2$ is *divergent*, if, for each compact set $K \subset M^2$, there exists a positive number m such that $\gamma([m, +\infty)) \subset M^2 \setminus K$.

One can check that the plane, the catenoid (Examples 5.13 and 2.4), the helicoid (Examples 5.12 and 2.6) (and Examples in Sections 2 and 5) are complete.

The following result is known (Osserman [6-3]):

Fact 6.1 (Osserman, 1961). Let $f: M^2 \to \mathbb{R}^3$ be a complete minimal immersion of an orientable manifold M^2 with finite total curvature. Then there exists a compact Riemann surface \overline{M}^2 and finite number of points $\{p_1, \ldots, p_n\}$ such that M^2 (with complex structure induced by the first fundamental form) is biholomorphic to $\overline{M}^2 \setminus \{p_1, \ldots, p_n\}$.

Here, the total curvature of the minimal surface $f: M^2 \to \mathbb{R}^3$ is the integral of the Gaussian curvature $K: \operatorname{TC}(f) := \int_{M^2} K \, dA$. Since K is non-negative for minimal surfaces, $\operatorname{TC}(f)$ is valued on $[-\infty, 0]$.

Scherk's surface (Example 2.2; extended to the doubly periodic surface), and the helicoid are complete but not of finite Sect. 6

Figure 4: The Jorge-Meeks surface for n = 3.

total curvature. On the other hand, the total curvature of the catenoid is -4π , which is finite. Moreover, the Jorge-Meeks surface (Example 5.16) has total curvature $-4(n-1)\pi$.

Embeddedness of minimal surfaces is also important global property. Scherk's surface, the catenoid and the helicoid are embedded, but the Jorge-Meeks surfaces for $n \ge 3$ are not-embedded (Figure 4).

Costa's example In this section, we introduce an example of compact embedded minimal surface with finite total curvature, firstly discovered by Costa [6-1].

Domain and the Weierstrass data Take a holomorphic function of two variables $F(z, w) := w^2 - z(z^2 - 1)$ and set

(6.1)
$$M_0 := \{(z, w) \in \mathbb{C}^2 ; w^2 = z(z^2 - 1)\} = F^{-1}(\{(0, 0)\}).$$

^{29.} July, 2016.

Since $(F_z, F_w) \neq (0, 0)$, M_0 is a complex submanifold of \mathbb{C}^2 , by the (complex) implicit function theorem, and it is homeomorphic to a torus with one point excluded. The functions z and ware holomorphic on M_0 . Since for each $z \neq 0, \pm 1$, there exists exactly two w's satisfying F(z, w) = 0, M_0 is a branched double cover of the Riemann sphere $\mathbb{C} \cup \{\infty\}$.⁵ We set

(6.2)
$$M^2 := M_0 \setminus \{(\pm 1, 0)\}, \qquad g := \frac{\alpha}{w}, \qquad \omega := \frac{z \, dz}{w},$$

where α is a positive constant defined later. Then one can easily check that (4.3) for ϕ holds on M^2 . We prove the following

Proposition 6.2 (Costa). The Weierstrass data (g, ω) induces a minimal immersion of M^2 into \mathbb{R}^2 .

 $\int_{\widetilde{\alpha}} \hat{\phi} \in i \mathbb{R}^3$

To show this, it is sufficient to show that

(6.3)

holds for all loops γ on M_0 , where (cf. Proposition 5.14).

$$\hat{\phi} = (\hat{\phi}_1, \hat{\phi}_2, \hat{\phi}_3) := (1 - g^2, i(1 + g^2), 2g)\omega.$$

Moreover, by Cauchy's theorem on complex integration, we only have to show (6.3) for generators of the fundamental group of M_0 . Let $\beta_{\pm 1}$, β_{∞} and γ_1 and γ_2 be loops as in Figure 5. Then these loops generates the fundamental group of M^2 . We shall prove (6.3) for these loops. Figure 5:

Remark that since $w^2 = z(z^2 - 1)$ holds on M_0 , we have

$$\hat{\phi}_3 = 2g\omega = \frac{2\alpha \, z \, dz}{w^2} = \frac{2\alpha \, dz}{z^2 - 1} = d\left(\alpha \log \frac{z - 1}{z + 1}\right),$$

and so

$$\operatorname{Re} \int \hat{\phi}_3 = \alpha \log \left| \frac{z - 1}{z + 1} \right|$$

which is well-defined on M^2 , that is, (6.3) holds for an arbitrary loop γ . Thus, we only consider the periods for $\hat{\phi}_1$ and $\hat{\phi}_2$.

The period about $\beta_{\pm 1}$. Since $F_z(\pm 1, 0) \neq 0$, w is a local complex coordinate near $(\pm 1, 0)$, and

$$dF = 2w\,dw - (3z^2 - 1)\,dz = 0$$

holds on M_0 . Thus, we have

$$\omega = \frac{z \, dz}{w} = \frac{2z \, dw}{3z^2 - 1},$$

 $^{^{5}}$ Such a double cover of the sphere is called a *hyperelliptic curve*.

that is, ω is holomorphic at $(\pm 1, 0)$. On the other hand,

$$g^{2}\omega = \frac{2\alpha^{2} z \, dz}{w^{3}} = \frac{2\alpha^{2} z}{3z^{2} - 1} \frac{dw}{w^{2}}$$

that is, $g^2 \omega$ has a pole of order 2 at $(z, w) = (\pm 1, 0)$. Moreover,

$$\frac{d}{dw}\frac{z}{3z^2-1} = \frac{dz}{dw}\frac{d}{dz}\frac{z}{3z^2-1} = \frac{2w}{3z^2-1}\frac{-2(3z^2+1)}{(3z^2-2)}.$$

Hence the residue of $g^2\omega$ at $(z, w) = (\pm 1, 0)$ vanishes.

Hence the integrals of $\hat{\phi}_1$ and $\hat{\phi}_2$ along the loops $\beta_{\pm 1}$ vanish.

The period about β_{∞} . The loop β_{∞} is considered as a loop surrounding $(z, w) = (\infty, \infty)$. We set u = 1/z, v = 1/w. Then the equation F(z, w) = 0 is equivalent to

$$G(u, v) := u^3 - v^2(1 - u^2) = 0.$$

Unfortunately, the derivatives of G vanish at (0,0). So we take (regularized) coordinate system (u,s) such that v = su (this procedure is known as *blowing-up*). Then

$$\tilde{G}(u,s) = u - s^2(1 - u^2) = 0$$

corresponds to the defining equation of M_0 . Using these coordinates, the Weierstrass data can be rewritten as

$$g = \frac{\alpha u}{s}, \qquad \omega = \frac{z \, dz}{w} = \frac{u}{s} \frac{1}{u} d\left(\frac{1}{u}\right) = -\frac{s \, du}{u^2}.$$

Sect. 6

Hence by the relations

 $s = \frac{u}{1 - u^2}, \quad 2s \, ds = d\left(\frac{u}{1 - u^2}\right) = \frac{u^2 + 1}{(u^2 - 1)^2} \, du,$

we have

$$\omega = \frac{-2\,ds}{s^2(1+u^2)}, \qquad g^2\omega = \frac{-2\alpha^2\,ds}{(1+u^2)(1-u^2)^2}$$

Hence $g^2 \omega$ is holomorphic and ω has a pole of order 2 at (0,0). By the similar way as the case at $z = \pm 1$, we can compute that the residue of ω vanish at s = 0. Hence the integrals of $\hat{\phi}_j$ (j = 1, 2) along β_{∞} vanish.

The period along γ_1 . Consider the loop $\gamma_1 = \gamma_1^+ \cup \gamma_1^-$. Since ω is holomorphic on a neighborhood of γ_1 , its integral along γ_1^{\pm} reduces to

(6.4)
$$\int_{\gamma_1^{\pm}} = \int_0^1 \frac{dt}{\sqrt{t(1-t^2)}} =: A > 0$$

On the other hand, $g^2 \omega$ has a pole of order 2 at (z, w) = (-1, 0), and the integration along the interval [-1, 0] diverges. So we consider a loop $z = -1/2 + re^{i\theta}$ on the z-plane. Then

$$\int_{\gamma_1^+} g^2 \omega = \alpha^2 B_r, \qquad \int_{\gamma_1^-} g^2 \omega = \alpha^2 \overline{B_r},$$

where

$$B_r := \int_0^{\pi} \frac{i r e^{i\theta} \, d\theta}{(z^2 - 1)\sqrt{z(z - 1)(z + 1)}} \qquad \left(z = -\frac{1}{2} + r e^{i\theta}\right).$$

Sect. 6

Since integration along γ_1 does not depend on a choice of $r \in (\frac{1}{2}, 1)$, we can set

(6.5)
$$B := \operatorname{Re} B_r = \operatorname{Re} \int_0^{\pi} \frac{ie^{i\theta} \, d\theta}{\sqrt{z\sqrt{z^2 - 1}^3}} \quad \left(z = -\frac{1}{2} + e^{i\theta}\right).$$

Moreover, one can check that B > 0 hols. Hence, if we choose $\alpha = \sqrt{A/B}$, we have

$$\int_{\gamma_1} \hat{\phi}_1 = \int_{\gamma_1} (1 - g^2) \omega = 2(A - \alpha^2 B) = 0.$$

On the other hand,

$$\int_{\gamma_1} \hat{\phi}_2 = \int_{\gamma_1} i(1+g^2)\omega = 2i(A+\alpha^2 B) \in i\mathbb{R}.$$

The period along γ_2 . Consider a map $\mathbb{C}^2 \ni (z, w) \mapsto (-z, iw) \in \mathbb{C}^2$, which induces an automorphism of the torus M_0 . This morphism maps the loop γ_1 to γ_2 , and $(g, \omega) \mapsto (-ig, -i\omega)$. Thus, we have

$$\int_{\gamma_2} \hat{\phi}_1 = -2i(A + \alpha^2 B), \quad \int_{\gamma_2} \hat{\phi}_2 = 2(A - \alpha^2 B) = 0.$$

Hence (6.3) is accomplished, and Proposition ?? is proven.

The minimal surface we have obtained such a way is called *Costa's surface*. Costa's surface is a complete, embedded minimal surface of genus 1, with 3 ends, whose total curvature is -12π .

(20160722) 48

References

- [6-1] C. J. Costa, Example of a complete minimal immersion in ℝ³ of genus one and three embedded ends, Bol. Soc. Brasil. Mat. 15 (1984), 47–54.
- [6-2] D. Hoffman and W. MeeksIII, Embedded minimal surfaces of finite topology. Ann. of Math. (2) 131 (1990), 1–34.
- [6-3] R. Osserman, A SURVEY OF MINIMAL SURFACES, Dover Publ.

Exercises

6-1^H Show that the third coordinate of Costa's surface is bounded as $(z, w) \to (\infty, \infty)$.