Area minimizing surfaces

A review of surface theory.

Let D C R? be a domain in the wv-plane and f: D — R? an
immersion. We often refer to such an immersion as a surface.
Then the unit normal vector of f is given by (with +-ambiguity)

o dux s
R

where “x” denotes the vector product of R3. The first and the
second fundamental forms are defined as

(1.1) :D— S? ={x c R®||x| = 1} C R,

ds?> = df - df = Edu® + 2F dudv + G dv?,

(1.2) ) )
I =—df -dv = Ldu*+ 2M dudv + N dv*,

where “” denotes the canonical inner product of R3. Here,

E::fu'fua F::fu'fv:fv'fuv G::fv'fw
L::_fu'l/uv M::_fu'yv:_fv'yuv N::_fv'l/v
:fuu'V7 :fuv'V7 :fvv'y
are called the entries of the first and the second fundamental

forms with respect to the parameters (u,v). The area of the
image of a compact region {2 C D is computed as

(1.3) A(R) = //QdA://Quuvamudv,
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where dA = |f, X fy|dudv = VEG — F? dudwv is said to be the
area element of the surface.
The derivatives of v is written as (the Weingarten Formula)

(1-4) Uy = *A%fu - A%fva Vy = *A%fu - A%fva
A:A%AézEF_lLM
’ A2 A2 F G M N)°
The matrix A is called the Weingarten matriz, and the determi-
nant K and the half H of the trace of A are called the Gaussian
curvature and the mean curvature, respectively:
LN — M? 1 A} + A3

15) K :=detA= -~ 20 Hi=—trA=
(1.5) ¢ EG—F2° 2 2

Area minimizing surfaces.
The purpose of this section is to show the following fact:

For a given simple closed curve C in R3, the surface
which minimizing area among all surfaces bounded
by C is a surface whose mean curvature vanishes
identically.

Setting up. As the description of the above fact is rather
intuituive, we will formulate the problem.
Let C be a simple closed smooth curve in R? and set

(1.6) Sp i {f D s R3- f is a C*°-immersion }
. c = : ; ’

foD)=¢C
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where D (resp. D) is the open (resp. closed) unit disc and D
is its boundary:!

(1.7) D:=DuUaD, {(u,v) € R?*; u? + 02 < 1},
{(u,v) € R*; u? +v* =1}
=

(cosf,sind); 6 € R}.

Roughly speaking, S¢ is “the set of the surfaces bounded by
C”. Then we set the area functional as

(1.8)  A:Se s f— A(f) :/§|fu X fol dudv.

Using these notations, our result can be stated as the following:

Theorem 1.1. If a surface f € S¢ attains the minimum of the
area functional A, the mean curvature of f vanishes identically.

Taking this fact into account, we define

Definition 1.2. A surface whose mean curvature vanishes iden-
tically is said to be minimal.

Remark 1.3. As Theorem 1.1 is a necessary condition for the
minimizer, a minimal surface is not necessarily a minimizer of
the area functional.

LA map f defined on D is said to be C° if there exists a open set D
containing D and a C°° map f defined on D such that f|D =

MTH.B402; Sect. 1 (20180508) 4

Variations of surfaces. To show Theorem 1.1, we want to
“differentiate” the functional A.

Definition 1.4. For a surface f € S¢, a variation (fixing the
boundary) of f is a C*°-map

F: D x (—¢,¢) 2 (u,v;t) — fi(u,v) := F(u,v;t) € R?

such that f° = f and f' € S¢ for each t € (—¢,¢), where ¢ is a
positive number. The vector-valued function
0

(1.9) V(u,v) := e B

fH(u,v)

is called the variational vector field of the variation F.

Lemma 1.5. For a variation F = {ft} of f € S. with varia-
tional vector field V', it holds that

d
@f(cos 0,sin6) x V(cosf,sinf) = 0.

Proof. Since (cosf,sinf) is a parametrization of 9D, v*(0) :=
ft(cos@,sin0) € C for all t and 6. Thus, two vectors in the left-
hand side of the first assertion are both tangent to C, proving
the lemma. O

The first variation formula.

Theorem 1.6. Let F = {f!'} be a variation of f € Sc with
variational vector field V.. Then it holds that

d

= tZOA(ft) 2—2//EH(V'I/) dA

(1.10) 7
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where H, v and dA are the mean curvature, the unit normal
vector and the area element of f, respectively.

Proof. By the definition of the area (5.3), we have

// 1L % £ dudo
t=0/JD

[fo % Syl dudv
t=0

d t
()= | AU

“Ja
s

://5(Vu><fv+fu><vv)~z/dudv
://5((1/“va)-y+(fuva)-y)dudv.

Here, by the formula of scalar triple product

_4d
Cdt

du dv

(axb)-c=(bxec)-a=(cxa) b=det(a,b,c),

we have
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By the Green-Stokes formula, (I) is computed as

O = [ 10 8) V), = (% £)-V),] due
:/8Du-((fudu+fvdv)><v)

= / v (jgf(cos 0,sin ) x V(cos 0, sin 9)) df = 0.

Here, the last assertion is obtained by Lemma 1.5. On the other
hand, using the Weingarten formula (1.4), (II) is computed as

(H)ZZ//E[(Vuva)-V—i-(foW).V
+(fuw ¥ ) V4 (fu x w) - V] dudv
Z//ﬁ[(vu X fo) V4 (fux ) - V] dudv
=[] s Az x5 v
+(fu % (Abfu+ A31)) - V] dudv
—— [ at+ By x )- v auao

:7//B2H(V-V)|fu><fv|dudv 0

Proof of Theorem 1.1. We need the following “the funda-
mental lemma for calculus of variations”.
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Lemma 1.7. Assume a smooth function h: D — R satisfies

//Bh(u,v)cp(u,v) dudv =0

for all C*°-function with ¢|sp =0. Then h =0 on D.

Proof. Assume h(ug,vo) > 0 (resp. < 0)((ug,v0) € D). By a
continuity, there exists € > 0 such that h(u,v) > — on an e-ball
B := B.(up,vg) centered at (ug,vg). Let ¢ be a non-negative
C*>-function on D such that ¢ > 0 on B and 0 on D\ B. Then

/Lh@dudv:// hodudv >0 (resp. < 0),
D B

a contradiction. O

Proof of Theorem 1.6. Assume f € S¢ minimizes the area. Then
for any variation F = {f*} of f, A(f") is not less than A(f) =
A(f%). Then by Theorem 1.6, it holds that

d
0=

A(fY) = —Q/EH(V-V)MU X fy| dudv.

t=0

Let ¢ be a C*-function on D with p|sp = 0. Then f* := f-+tpv
is a variation of f with variational vector field V' = ¢v. Thus,

/ H|fu % folp = 0.

Since ¢ is arbitrary, Lemma 1.7 yields the conclusion. O
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Ezxercises

1-1" Define a functional V: S¢ — R defined on S¢ as in (1.6)
as

V()= g [ lfax flauas (7€ o).

Then

(1) Explain a geometric meaning of V(f).

V(f*") for a variation {f*} of f € Sc.

d
2 l
(2) Compute i,




