
Surfaces of constant mean curvature

Closed surfaces A closed surface in the Euclidean 3-space
R3 is a C∞-immersion f : Σ → R3 of a compact, connected
2 dimensional manifold Σ into R3. Taking a local coordinate
neighborhood (U ; u, v) of Σ, f can be identified a parametrized
surface f(u, v) as in the previous section.

Throughout this section, we assume that Σ is oriented, that
is, an atlas {(Uα;uα, vα) | α ∈ A} of Σ satisfying

(2.1)
∂(uβ , vβ)

∂(uα, vα)
:= det Jαβ > 0 on Uα ∩ Uβ

for each α, β ∈ A with Uα ∩Uβ ̸= ∅ is specified. Here Jαβ is the
Jacobian matrix of the coordinate change (uα, vα) 7→ (uβ , vβ)

(2.2) Jαβ :=

(
∂uβ

∂uα
∂uβ

∂vα

∂vβ

∂uα
∂vβ

∂vα

)

Fix a coordinate neighborhood (U ;u, v). Then the immer-
sion f : (u, v) 7→ f(u, v) is considered as a vector-valued smooth
function on U , and so are there derivatives fu and fv. Then the
unit normal vector ν, the first fundamental form ds2, the second
fundamental form II, the area element dA, the Gaussian curva-
ture K and the mean curvature H are defined as in (1.1), (1.2),
(5.3) and (1.5) in the previous section. Moreover, one can prove
easily that they are independent on choice of local coordinate
systems (cf. [2-1] and/or [2-2]).
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Definition 2.1. Let f : Σ → R3 be an oriented closed surface.
Then the area A(f) of f(Σ) and the (signed) volume V(f) of
the region bounded by f(Σ) are defined as

A(f) :=

∫

Σ

dA, V(f) :=
1

3

∫

Σ

f · ν dA,

where “·” denotes the canonical inner product of R3, ν is the
unit normal vector as in (1.1), and dA denotes the area element
which is represented by dA := |fu ×fv| du dv on each coordinate
neighborhood (U ; u, v).

Remark 2.2. If the surface f is an embedding, that is, the map
f is injective (in this case), the image f(Σ) bounds a bounded
and connected region D of R3, and the volume of D coincide
with the absolute value of V(f).

Obviously, these two functionals have the following proper-
ties:

Lemma 2.3. For an immersion f ∈ S(Σ) and a positive num-
ber λ > 0, A(λf) = λ2A(f), and V(λf) = λ3V(f) hold.

Example 2.4 (The round sphere). Let R > 0 be a constant
and denote by

S2(R) :=
{
x ∈ R3 | |x| = R

}
⊂ R3

the sphere in R3 of radius R centered at the origin. Then the
inclusion map

ι : S2(R) ∋ x 7−→ ι(x) = x ∈ R3
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is an embedding. A map

(
−π

2
,
π

2

)
× (−π, π) ∋ (u, v)

7−→ (R cos u cos v,R cos u sin v,R sinu) ∈ S2(R)

gives a local coordinate system of S2(R), and we have

dA = R2 cos u du dv, ν = −(cosu cos v, cos u sin v, sinu).

Since this coordinate neighborhood covers an open dense subset
of S2(R), “integration over S2(R)” is replaced by “integration
over

[
−π

2 , π
2

]
× [−π, π]”:

A(ι) =

∫ π/2

−π/2

du

∫ π

−π

dv R2 cos u

= 2πR2

∫ π/2

−π/2

cosu du = 4πR2,

V(ι) =
1

3

∫ π/2

−π/2

∫ π

−π

R3 cos u du dv = −4

3
πR3.

The Gaussian and the mean curvature are computed as

K =
1

R2
and H =

1

R
,

respectively, which are constant on the surface. We call S2
R the

round sphere of radius R.
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Area minimizing surfaces with a volume constraint. Let
Σ be a compact, connected and oriented 2-manifold and consider

(2.3) S(Σ) = {f : Σ → R3 | f is an immersion}.

In addition, for a fixed positive constant V0. we set

(2.4) S(Σ, V0) := {f ∈ S(Σ) | V(f) = V0},

that is, S(Σ, V0) is the set of immersions of Σ into R3 bounding
given volume V0.

In this section, we shall prove

Theorem 2.5. If f0 ∈ S(Σ, V0) minimizes the area in S(Σ, V0),
the mean curvature of f0 is non-zero constant.

Theorem 2.5 and Example 2.4 give rise to the following ques-
tion, known as Heinz-Hopf’s problem:

Question 2.6. Are there a closed surface of constant mean cur-
vature which is not congruent to the round sphere?

Variation formula for the area and the volume Similar
to the previous section, we define variations of f ∈ S(Σ):

Definition 2.7. A variation of an immersion f : Σ → R3 is a
C∞-map F : (−ε, ε) × Σ → R3 satisfying

• f t := F (t, ∗) : Σ → R3 is an immersion for each t ∈ (−ε, ε),

• f0 = F (0, ∗) coincides with f .
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The variational vector field V of a variation F = {f t} is a
vector-valued function V on Σ defined by

V (p) :=
∂

∂t

∣∣∣∣
t=0

F (t, p) (p ∈ Σ).

Similar to variational formula in Section 1, we have

Theorem 2.8. Let {f t} be a variation of an immersion f : Σ →
R3. Then

d

dt

∣∣∣∣
t=0

A(f t) = −2

∫

Σ

Hφ dA,
d

dt

∣∣∣∣
t=0

V(f t) =

∫

Σ

φdA,

hold, where φ := V · ν, V is the variational vector field of {f t}
and ν is the unit normal vector field of f .

Proof. Since almost all part of the computation in the previous
section are coordinate-independent, we can show the result in a
similar way to them.

Here, we shall prove the formula for the volume functional.
Let (U ; u, v) be a local coordinate system. Then it holds that

Φ : = f t · νt|f t
u × f t

v| = f t · f t
u × f t

v

|f t
u × f t

v| |f t
u × f t

v|

= det(f t, f t
u, f t

v)

Differentiating this in t, we have

∂

∂t

∣∣∣∣
t=0

Φ = det(ḟ t, fu, fv) + det(f, ḟ t
u, fv) + det(f, fu, ḟ t

v)

= det(V, fu, fv) + det(f, Vu, fv) + det(f, fu, Vv),
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where ∗̇ = (∂/∂t)|t=0. Here, since

det(V, fu, fv) = V · (fu × fv) = (V · ν)|fu × fv|,
det(f, Vu, fv) =

(
det(f, V, fv)

)
u

− det(f, V, fuv) − det(fu, V, fv)

=
(
det(f, V, fv)

)
u

− det(f, V, fuv) + det(V, fu, fv)

det(f, fu, Vv) =
(
det(f, fu, V )

)
v

− det(f, fuv, V ) − det(fv, fu, V )

=
(
det(f, fu, V )

)
v

− det(f, fuv, V ) + det(V, fu, fv),

it holds that
(

∂

∂t

∣∣∣∣
t=0

Φ

)
du ∧ dv = 3(V · ν) |fu × fv| du ∧ dv

+

((
det(f, V, fv)

)
u

+
(
det(f, fu, V )

)
v

)
du ∧ dv.

Here, setting

α := det(f, V, fu) du + det(f, V, fv) dv = det(f, V, df),

we have the coordinate-independent expression
(

∂

∂t

∣∣∣∣
t=0

Φ

)
du ∧ dv = 3(V · ν) dA + dα,

and then,

d

dt

∣∣∣∣
t=0

V(f t) =
1

3

∫

Σ

(
∂

∂t

∣∣∣∣
t=0

Φ

)
du ∧ dv

=

∫

Σ

(V · ν) dA +
1

3
dα =

∫

Σ

(V · ν) dA,

proving the formula.
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Proof of Theorem 2.5. Let f0 ∈ S(Σ, V0) be an immersion
minimizing area in S(Σ, V0). Then it holds that

(2.5)
d

dt

∣∣∣∣
t=0

A(f t) = 0
for any volume preserving
variation {f t}.

Here, a variation {f t} of f0 is said to be volume preserving if
V(f t) = V(f0) for all t.

Let {f t} be a (not necessarily volume preserving) variation
of f0. Then, by Lemma 2.3, {f̃ t} defined by

f̃ t :=
V(f t)−1/3

V(f0)−1/3
f t

is volume preserving variation, and the map {f t} 7→ {f̃ t} is a
surjection to the set of volume preserving variations. That is,
(2.5) is equivalent to

(2.6)
d

dt

∣∣∣∣
t=0

A
(V(f t)−1/3

V(f0)−1/3
f t

)
= 0 for any variation {f t}.

Here, by Theorem 2.8,

d

dt

∣∣∣∣
t=0

A
(
V(f t)−1/3 f t

)
=

d

dt

∣∣∣∣
t=0

V(f t)−2/3A(f t)

= −2

3
V̇(f t)V(f0)

−5/3A(f0) + V(f0)
−2/3Ȧ(f t)

= V(f0)
−2/3

(
−2

3

A(f0)

V(f0)
V̇(f t) + Ȧ(f t)

)

= V(f0)
−2/3

(∫

Σ

(
−2

3

A(f0)

V(f0)
− 2H

)
φ dA

)
,
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where ∗̇ = (d/dt)|t=0 and φ = V · ν. Then by Lemma 1.7,

−2

3

A(f0)

V(f0)
− 2H = 0,

holds, and then H is constant.
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Exercises

2-1H Let C := {γ : S1 → R2 | γ′ ̸= 0} be the set of regular closed
curves on R2.

(1) Define the area A(γ) of the region bounded by γ.

(2) Let C(a) be the set of curves γ with A(γ) = a. Show
that if a curve γ0 ∈ C(a) minimizes the length in
C(a), the curvature of γ0 is constant.

Hint: A curve γ ∈ C(a) can be parametrized γ(t) =
t
(x(t), y(t)) as a 2π-periodic function. The length L(γ)

and the curvature function κ of γ are defined as

L(γ) :=

∫ 2π

0

|γ̇(t)| dt, κ(t) :=
det(γ̇(t), γ̈(t))

|γ̇(t)|3

where ˙ = d/dt.


