Surfaces of constant mean curvature

Closed surfaces A closed surface in the Euclidean 3-space
R? is a C™®-immersion f: ¥ — R? of a compact, connected
2 dimensional manifold ¥ into R3. Taking a local coordinate
neighborhood (U;u,v) of ¥, f can be identified a parametrized
surface f(u,v) as in the previous section.

Throughout this section, we assume that ¥ is oriented, that
is, an atlas {(Uy; u®,v¥) |a € A} of ¥ satisfying

(v, v?)

(2.1) W

:=det Jog >0 on Uy, NUg

for each o, 8 € A with U, NUgs # 0 is specified. Here J,p is the
Jacobian matriz of the coordinate change (u®,v®) — (u?,v?)

P 9P
(2:2) Jap = gZﬁ gZﬂ

ou® ove

Fix a coordinate neighborhood (U;wu,v). Then the immer-
sion f: (u,v) — f(u,v) is considered as a vector-valued smooth
function on U, and so are there derivatives f, and f,. Then the
unit normal vector v, the first fundamental form ds?, the second
fundamental form II, the area element dA, the Gaussian curva-
ture K and the mean curvature H are defined as in (1.1), (1.2),
(5.3) and (1.5) in the previous section. Moreover, one can prove
easily that they are independent on choice of local coordinate
systems (cf. [2-1] and/or [2-2]).
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Definition 2.1. Let f: ¥ — R? be an oriented closed surface.
Then the area A(f) of f(X) and the (signed) volume V(f) of
the region bounded by f(X) are defined as

apy= [aa wip=g [ fovaa

where “” denotes the canonical inner product of R3, v is the
unit normal vector as in (1.1), and dA denotes the area element
which is represented by dA := |f,, X f,| dudv on each coordinate
neighborhood (U;u,v).

Remark 2.2. If the surface f is an embedding, that is, the map
f is injective (in this case), the image f(3) bounds a bounded
and connected region D of R?, and the volume of D coincide
with the absolute value of V(f).

Obviously, these two functionals have the following proper-
ties:

Lemma 2.3. For an immersion f € S(X) and a positive num-

ber A >0, ANf) = N2A(f), and VOAS) = A3V(f) hold.

Example 2.4 (The round sphere). Let R > 0 be a constant
and denote by

S*(R) := {x € R*||z| = R} C R®

the sphere in R3 of radius R centered at the origin. Then the
inclusion map

t:S*(R)sx— 1(x) =x € R3
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is an embedding. A map

(—g, g) X (—m,7) 3 (u,v)
— (Rcosucosv, Rcosusinv, Rsinu) € S*(R)
gives a local coordinate system of S?(R), and we have
dA = R? cosududv, v = —(cos u cos v, cos usin v, sinu).
Since this coordinate neighborhood covers an open dense subset

of S%(R), “integration over S%(R)” is replaced by “integration
over [—Z, 2] x [-m, 7]

/2 ™
A() :/ du/ dv R? cosu
—7/2 -7
/2

= 27TR2/ cosudu = 47TR2,
—m/2

1 m/2 ™ 5 4 5
V() == R’ cosududv = —=mR".
3 —n/2J—7 3

The Gaussian and the mean curvature are computed as

respectively, which are constant on the surface. We call 5’12% the
round sphere of radius R.
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Area minimizing surfaces with a volume constraint. Let
Y be a compact, connected and oriented 2-manifold and consider

(2.3) S(¥) = {f: ¥ — R®| f is an immersion}.
In addition, for a fixed positive constant V. we set
(2.4) S(E, Vo) :={f € SE)[V(f) = Vo},

that is, S(X, Vp) is the set of immersions of ¥ into R? bounding
given volume Vj.
In this section, we shall prove

Theorem 2.5. If fy € S(X, V) minimizes the area in S(X, Vp),
the mean curvature of fy is non-zero constant.

Theorem 2.5 and Example 2.4 give rise to the following ques-
tion, known as Heinz-Hopf’s problem:

Question 2.6. Are there a closed surface of constant mean cur-
vature which is not congruent to the round sphere?

Variation formula for the area and the volume Similar
to the previous section, we define variations of f € S(X):

Definition 2.7. A wariation of an immersion f: ¥ — R3 is a
C®-map F: (—¢,¢) x & — R3 satisfying

o fl:=F(t,*): ¥ — R3is an immersion for each t € (—¢,¢),

e f0 = F(0,%) coincides with f.
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The variational vector field V of a variation F = {f'} is a
vector-valued function V on X defined by

V(p) == F(t,p) (peX).

t=0

ot
Similar to variational formula in Section 1, we have

Theorem 2.8. Let {f'} be a variation of an immersion f: 3 —
R3. Then

d oo d
Gl == [ e 4

V() = dA,
. (f") /Eso

hold, where @ :=V - v, V is the variational vector field of {ft}
and v is the unit normal vector field of f.

t=0

Proof. Since almost all part of the computation in the previous
section are coordinate-independent, we can show the result in a
similar way to them.

Here, we shall prove the formula for the volume functional.
Let (U;wu,v) be a local coordinate system. Then it holds that

ft

D= f U x fol = f |ftxft||ft £l

= det(s*, 1, £
Differentiating this in ¢, we have

0

5i| @ =det(f', fu, fo) + det(f, fi, o) + det(f, fu, £2)
t=0

= det(V, fu, fo) + det(f, Vi, fo) + det(f, fu, V2),
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where % = (9/0t)|;—o. Here, since

det(V, fu, fo) =V - (fu x fo) = (V- )| fu X ful,

det(f, Vu, fo) = (det(f, V., fu)),, — det(f, V. fuv) — det(fu, V, fo)
= (det(f,V, o)), — det(f,V, fuv) + det(V, fu, fo)

det(f, fu, Vi) = (det(f, fu, V), — det(f, fuv, V) — det(fo, fu, V)
= (det(f, fu, V), = det(f, fuv, V) + det(V, fu, fo),

it holds that
9
ot

Here, setting
a:=det(f,V, fu) du+det(f,V, f,) dv = det(f, V. df),

we have the coordinate-independent expression

9
at|,_,

IR /(5

:/E(V-y)dA—i—%da:/(Vm)dA,

b

@) du Ndv =3V -v)|fu X folduAdv
=0

+ ((det(f, V. ), + (det(f, fu, V))v) du A dv.

@) duNdv=3(V -v)dA + da,

and then,
d

dt

@) du N dv

proving the formula. O
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Proof of Theorem 2.5. Let fy € S(X,V)) be an immersion
minimizing area in S(X, V). Then it holds that

d A B for any volume preserving

— (f)=0 variation {f*}.

CRIN

t=0

Here, a variation {f'} of fy is said to be volume preserving if

V(f*) = V(fo) for all t.
Let {f'} be a (not necessarily volume preserving) variation

of fo. Then, by Lemma 2.3, {f*} defined by

(ft) 1/3 ff
V(fo) 173
is volume preserving variation, and the map {f'} — {f'} is a

surjection to the set of volume preserving variations. That is,
(2.5) is equivalent to

=

(2.6) % t_gA( 2;3 1;2 ft> =0 for any variation {f}.
Here, by Theorem 2.8,

d =13 oty _ 4 ty—2/ t

G Avae = g vea

:—§v<ft>w o) TP A(fo) + V(fo) PRA(S)

_ —az [ 2AW0) vy gty L g gt
V(fo) ( .y v<f>+A<f>)

)
0)
= V(fo) 2 (/E (gé(( 25 - QH) WlA) ’
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where % = (d/dt)|t—9 and ¢ =V - v. Then by Lemma 1.7,

2 A(fo)
3V(fo)

holds, and then H is constant.

—2H =0,
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Ezxercises

2-1" Let C := {v: S — R? |+’ # 0} be the set of regular closed
curves on R2.

(1) Define the area A(7y) of the region bounded by .

(2) Let C(a) be the set of curves v with A(v) = a. Show
that if a curve 79 € C(a) minimizes the length in
C(a), the curvature of ¢ is constant.

Hint: A curve v € C(a) can be parametrized (t) =
"(x(t),y(t)) as a 2m-periodic function. The length £(7)
and the curvature function k of v are defined as

det(§(4), ¥(*))

c= [ hld w) = <G

where * = d/dt.



