
Examples of Constant Mean Curvature Surfaces

Planar curves. Let γ : I ∋ s 7→ γ(s) ∈ R2 be a smooth map
defined on an I ⊂ R. Then γ is called a regular curve if γ̇ ̸= 0
on I, where ˙ = d/ds. The parameter s is called an arc length
parameter if

(3.1) |γ̇(s)| =

∣∣∣∣
dγ

ds
(s)

∣∣∣∣ = 1

holds on I.

Lemma 3.1. A regular curve γ : I ∋ t 7→ γ(t) ∈ R2 defined
on an interval I ⊂ R can be reparametrized by an arc length
parameter. Moreover, such an arc length parameter is unique
up to additive constants.

Proof. Fix t0 ∈ I and define a function s : I → R by

s(t) :=

∫ t

t0

∣∣∣∣
dγ

dt
(u)

∣∣∣∣ du.

Then s : I → J ⊂ R is a smooth function such that ds/dt > 0.
Hence there exists the smooth inverse J ∋ s 7→ t(s) ∈ I. Then
γ̃(s) := γ

(
t(s)

)
is the desired reparametrization. In fact,

∣∣∣∣
dγ̃(s)

ds

∣∣∣∣ =

∣∣∣∣
dγ

dt

(
t(s)

) dt

ds
(s)

∣∣∣∣ =

∣∣∣∣
dγ

dt

(
t(s)

) 1

ds/dt(t(s))

∣∣∣∣

=

∣∣∣∣∣
dγ

dt

(
t(s)

) 1

|dγ/dt
(
t(s)

)
|

∣∣∣∣∣ = 1.
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So we have the first assertion. Let s and u be two arc length
parameters. Then there exists a parameter change u = u(s),
which is strictly increasing function such that

1 =

∣∣∣∣
dγ

ds

∣∣∣∣ =

∣∣∣∣
dγ

du

du

ds

∣∣∣∣ =
du

ds

∣∣∣∣
dγ

du

∣∣∣∣ =
du

ds
.

Hence u = s + constant, proves the second assertion.

Throughout this section, we assume that planar curves are
parameterized by arc length parameter.

Let γ(s) =
t(

x(s), y(s)
)

(s ∈ I)be a parametrized planar
curve where s is an arc length parameter. Then

e(s) := γ̇(s) =

(
ẋ(s)
ẏ(s)

)
, n(s) :=

(
−ẏ(s)

ẋ(s)

)

are mutually perpendicular orthogonal vectors for each s ∈ I.
Thus we have obtained a map

(3.2) F(s) :=
(
e(s), n(s)

)
: I 7−→ SO(2),

where SO(2) is the set (a group) of 2 × 2-orthogonal matrix of
determinant 1. We call F the frame of γ. Note that

(3.3) SO(2) = {R(θ) | θ ∈ R} , R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
.

Theorem 3.2 (The Frenet formula). Let F(s) be the frame of
the curve γ(s) where s is an arc length parameter defined on an
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interval I. Then there exists a unique smooth function κ : I → R
such that

(3.4) Ḟ = FΩ Ω(s) := κ(s)

(
0 −1
1 0

)
.

Proof. Since F is a function valued on SO(2), F−1Ḟ is valued
on the set of skew-symmetric matrices. In fact, since tF = F−1,

t (
F−1Ḟ

)
=

t (
tFḞ

)
=

tḞF =
d

ds
F−1F

= −F−1ḞF−1F = −F−1Ḟ .

Hence there exists a function κ(s) such that

F−1Ḟ =

(
0 −κ
κ 0

)
,

proving the theorem.

We call the function κ the curvature of the curve γ.

Proposition 3.3. Let γ(s) =
t(

x(s), y(s)
)

be a planar curve
parametrized by the arc length s. Then its curvature satisfies

κ = ẋÿ − ẏẍ.

Theorem 3.4 (The fundamental theorem for planar curves).
Let κ : I → R be a smooth function. Then there exists a curve
γ : I → R parametrized by the arc length whose curvature is κ.
Moreover, such a curve γ is unique up to rotations and transla-
tions of R2.
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Proof. First we shall prove uniqueness: Let γj (j = 1, 2) be
curves with curvature κ, and denote by Fj (j = 1, 2) the frame
of γj . Then by (3.4),

d

ds
(F2F−1

1 ) =
d

ds
(F2

tF1) = Ḟ2
tF1 + F2

tḞ1

= F2Ω
tF1 + F2

t
(F1Ω) = F2(Ω + tΩ)tF1 = O

holds, and thus there exists a constant matrix such that

F2F−1
1 = A (A ∈ SO(2)),

that is, F2 = AF1. Comparing the first column of this, we have

γ̇2 = Aγ̇1 and then γ2 = Aγ1 + a,

where A ∈ SO(2) and a ∈ R2. Hence the uniqueness part holds.
Next, we prove existence: fix s0 ∈ I and set

γ(s) :=

∫ s

s0

(
cos

∫ u

s0

κ(t) dt, sin

∫ u

s0

κ(t) dt

)
du.

Then one can check that s is the arc length parameter of γ(s),
and κ(s) is the curvature.

Surfaces of revolution. Let γ(s) =
(
x(s), y(s)

)
be a regular

curve parametrized by the arc length s, satisfying y(s) > 0 for
all s. Then the surface of revolution of γ about the x-axis is
parametrized as

(3.5) f(t, s) :=
(
x(s), y(s) cos t, y(s) sin t

)
, (t, s) ∈ S1 × I.
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The curve γ is called the profile curve of the surface (3.5).
Noticing ẋ2 + ẏ2 = 1, the first fundamental form I and the

second fundamental form II of f are expressed as

I = y2 dt2+ds2, II = −ẋy dt2+(ẋÿ−ẏẍ) ds2 = −ẋy dt2+κ ds2,

where κ is the curvature of the profile curve (cf. Proposition 3.3).
Hence we have

Proposition 3.5. The mean curvature function H of the sur-
face (3.5) is expressed as

(3.6) 2H = κ − ẋ

y
.

Delaunay surfaces.

Theorem 3.6. Let H be a non-zero constant. Then the profile
curve (x(s), y(s)) of a surface of revolution with constant mean
curvature H is expressed as

(3.7)

y(s) =
1

2|H|
√

(2Ha + 1)2 − 2(2Ha + 1) cos 2Hs + 1,

x(s) =

∫ s

0

(2Ha + 1) cos 2Hu − 1

2Hy(u)
du,

up to horizontal translations and parameter changes, where a is
a constant.

Proof. Let γ(s) :=
(
x(s), y(s)

)
be the profile curve of given sur-

face of revolution with constant mean curvature H. Then by
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(3.6), the curvature function κ of γ satisfies

κ = 2H +
ẋ

y
.

Thus, the frame F of γ satisfies the Frenet formula (Theo-
rem 3.2):

(3.8) Ḟ =

(
2H +

ẋ

y

)
F

(
0 −1
1 0

)
.

We shall find the curve solving this differential equation. Set

F̃ := yF .

Then, noticing

(3.9) ẋ2 + ẏ2 = 1,

the equation (3.8) is equivalent to

(3.10)
˙̃F = F̃

(
0 −2H

2H 0

)
+

(
0 −1
1 0

)
.

Let

(3.11) A(s) := F̃(s)F0(s)
−1,

F0(s) := R(2Hs) =

(
cos 2Hs − sin 2Hs
sin 2Hs cos 2Hs

)
.

Substituting F̃ = AF0 into (3.10), we have

(3.12) Ȧ =

(
0 −1
1 0

)
F−1

0 =

(
sin 2Hs − cos 2Hs
cos 2Hs sin 2Hs

)
,
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and then

(3.13) A =
−1

2H

(
cos 2Hs sin 2Hs

− sin 2Hs cos 2Hs

)
+ C,

where C is a constant matrix. Summing up, it holds that

(3.14) yF = F̃ = AF0

=
1

2H

(
C

(
cos 2Hs − sin 2Hs
sin 2Hs cos 2Hs

)
− id

)
.

Since right-hand side is a periodic function and F ∈ SO(2), y2

(and then y) is a periodic function. Hence y must take both
maximum and minimum. By a change of parameter s to s +
constant and a horizontal translation x 7→ x+constant, we may
assume y takes its maximum at s = 0, and x(0) = 0. Moreover,
by the reflection of the y-axis, we may assume ẋ(0) ≧ 0 without
loss of generality.2 Hence we can assume an initial condition
(
x(0), y(0)

)
= (0, a),

(
ẋ(0), ẏ(0)

)
= (1, 0), ÿ(0) = κ(0) ≦ 0.

Substituting these into (3.14), we have C = (2Ha + 1) id:

(3.15) yF =
1

2H

(
(2Ha + 1)

(
cos 2Hs − sin 2Hs
sin 2Hs cos 2Hs

)
− id

)
.

Taking the determinant of this, we have

y2 =
1

(2H)2
(
(2Ha + 1) cos 2Hs − 1)2 + (2Ha + 1)2 sin2 2Hs

)

2Note that H changes its sign by a reflectoin. Under these assumptions,
H must be non-positive because of (3.6).
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and then

y =
1

2|H|
√

(2Ha + 1)2 − 2(2Ha + 1) cos 2Hs + 1.

On the other hand, the (1, 1)-component of (3.15) is expressed
as

yẋ =
1

2H

(
(2aH + 1) cos 2Hs − 1

)
.

Thus we have the conclusion when H < 0. By replacing s
by −s, the mean curvature changes the sign. Hence the same
expressions are obtained.

The surfaces in (3.7) are called the Delaunay surfaces.
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Exercises

3-1H Draw pictures of Delaunay curves for H = 1
2 .

3-2H Classify minimal surfaces of revolution.


