Linear Ordinary Differential Equations
Preliminaries: Matrix Norms. Denote by M, (R) the set
of n X n matrix with real components, which can be identified

the vector space R™. In particular, the Euclidean norm of R"’
induces a norm

(1.1) | X|g = \/tr(" X X) =

on M,,(R). On the other hand, we let

(1.2) | X |m = sup {|X1|J|, veR™\ {0}},

|v

where | - | on the right-hand side denotes the Euclidean norm of
R™.

Lemma 1.1. (1) The map X — |X|um is a norm of M, (R).
(2) For X,Y € M,,(R), it holds that | XY |m < | X |Mm [Y]m-

(3) Let A = A(X) be the mazimum eigenvalue of semi-positive
definite symmetric matriz "X X. Then |X|m = VA holds.

4) (1/vn)IX[e = |X|u = [ X]e.

(5) The map |- |m: Mp(R) = R is continuous with respect to
the Euclidean norm.
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Proof. Since | Xwv|/|v| is invariant under scalar multiplications
to v, we have |X|y = sup{|Xv|; v € S !}, where S"~ 1 is
the unit sphere in R™. Here, the S"! > = — |Az| € R is
a continuous function defined on a compact space, and so the
map takes maximum. Thus, the right-hand side of (1.2) is well-
defined. It is easy to verify that | - |y satisfies the axiom of the
norm.

Since A := "X X is positive semi-definite the eigenvalues Aj

(j = 1,...,n) are non-negative real numbers. In particular,
there exists an orthonormal basis [a;] of R™ satisfying Aa; =
Aja; (7 =12,...,n). Let A be the maximum eigenvalues of A,

and write v = viay1 + - - - +v,a,. Then it holds that
(Xv, Xv) = Mol + -+ M2 S A (v,v),

where ( , ) is the Euclidean inner product of R”. The equality of
this inequality holds if and only if v is the A-eigenvector, proving
(3). Noticing the norm (1.1) is invariant under conjugations
X = "PXP (P € O(n)), we obtain |X|g = VA + -+ \, by
diagonalizing * X X by an orthogonal matrix P. Then we obtain
(4). Hence two norms |- |g and | - | induce the same topology
M,,(R). In particular, we have (5). O

Preliminaries: Matrix-valued Functions.

Lemma 1.2. Let X and Y be C*°-maps defined on a domain
U C R™ into M, (R). Then
0 0X aYy

1) —(XY)=—Y +X—
() 8’uj( ) auj + auj’
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(2) idetX =tr (fw(), and
an auj
0 0X
X—l — _X—l X—l
(3) 8uj an ’

where X is the cofactor matriz of X, and we assume in (3).

Proposition 1.3. Assume two C*° matriz-valued functions X (t)
and £2(t) satisfy

(1.3) d)fot) = X (¢)02(¢), X (to) = Xop.
Then
(1.4) det X (t) = (det Xg) exp /t tr 2(7) dr

holds. In particular, if Xo € GL(n,R), ! then X(t) € GL(n,R)
for all t.

Proof. By (2) of Lemma 1.2, we have

dt dt
= tr(det X (£)£2(t)) = det X (¢) tr £2(¢).

4 et X(t) =tr ()?(t)dx(t)) =tr (f((t)X(t)Q(t))

Here, we used the relation XX = XX = (det X)id?. Hence
4 (p(t)~'det X(t)) = 0, where p(t) is the right-hand side of
(1.4). 0
LGL(n,R) = {4 € M, (R); det A # 0}: the general linear group.
2In this lecture, id denotes the identity matrix.

MTH.B402; Sect. 1 (20180703) 4

Proposition 1.4. Assume (2(t) in (1.3) is skew-symmetric for
all t, that is, "2 + 2 is identically O. If Xo € O(n) (resp.
Xo €80(n) )3, X(t) € O(n) (resp. X(t) € SO(n)) for all t.

Proof. By (1) in Lemma 1.2,

d, oy dX, brdx
Clt(XX)_thJrX(dt)

= XX+ X'2'X =X(2+'0)'X =0.
Hence X' X is constant, that is, if Xy € O(n),
X()'X(t) = X(t) X (to) = Xo' Xo = id.

if Xo € O(n), proves the first case of the proposition. Since
det A = £1 when A € O(n), the second case follows by conti-
nuity of det X (¢). O

Preliminaries: Norms of Matrix-Valued functions. Let
I = [a,b] be a closed interval, and denote by C°(I,M,(R))
the set of continuous functions X: I — M, (R). For any fixed
number k, we define

(1.5) || X||1,% := sup {e*kt\X(t)h\/{; tGI}

for X € C°(I,M,,(R)). When k = 0, ||-||1,0 is the uniform norm
for continuous functions, which is complete. Similarly, one can
prove the following in the same way:

30(n) = {A € Ma(R); tAA = A*A = id}: the orthogonal group;
SO(n) = {A € O(n); det A = 1}: the special orthogonal group.
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Lemma 1.5. The map || - ||1.x: C°(I,M,(R)) is a complete
norm.

Linear Ordinary Differential Equations. We prove the
fundamental theorem for linear ordinary differential equations.

Proposition 1.6. Let 2(t) be a C*°-function valued in M, (R)
defined on an interval I. Then for each tg € I, there exists the
unique matriz-valued C™-function X (t) = Xy, 1a(t) such that

dX (1)

(1.6) -

= X(OR),  X(ty) =id.

Proof. Uniqueness: Assume X (¢) and Y (¢) satisfy (1.6). Then

Y(t) - X(1) :/ (Y'(r) - X'(r)) dr

to

:/ (Y(7) — X(7)) 2(r) dr

to
holds. Hence for an arbitrary closed interval J C I,

t

‘(Y(T) — X(T))Q(T)| dr

Y () — X&) = ) M

t

S| V(7)) = X (1) [92(7) ]y d7

/ e Y (7) = X(7)]y €7 1207y, dr

to
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t
/ erT dr
to

Supy |Q|M6kt
k|

= HY—XHJ,kSgPIQIM

=Y = X[l 1 — ettt

holds for t € J. Here, setting J = [tg,a] and k = 2sup; |2|m,
we have

1
1Y = Xllsx = SIY = X[k,

that is, [|Y — X||sx = 0, proving Y (¢t) = X (¢) for t € J. Simi-
larly, on the interval J' = [a,to], we can conclude Y = X on J’
setting k = —2sup |2|um. Since J and J’ are arbitrary, Y = X
holds on I.

Existence: Let J := [tg,a] C I be a closed interval, and de-
fine a sequence {X;} of matrix-valued functions defined on I
satisfying X(¢t) = id and

t

L7) Xpai(t) :id+/ X, (1)) dr (G =0,1,2,...).
to

Let k := 2sup; |£2|m. Then

|Xj+1(t)—Xj(t)|M§/t |X;(7) = Xj—1(7)Im[$2(7) |m dT

sup; [£2|m

< eM|X; — X alluk .

ek‘t
= 7||Xj = Xj-1llsk

and hence || X; 11— X|[sx £ 3| X;—X;_1]| 7k, that is, {X;} isa
Cauchy sequence with respect to ||-||s5. Thus, by completeness
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(Lemma 1.5), it converges to some X € C°(J, M, (R)). By (1.7),
the limit X satisfies

X(to) =id, X(t) = id—|—/ttX(T)Q(T) dr.

Applying the fundamental theorem of calculus, we can see that
X satisfies X'(t) = X (¢)2(¢) (' = d/dt). Since J can be taken
arbitrarily, existence of the solution on I N{t = ¢y} is proved.
Existence of I N {t < tg} can be proved in the same way. So
far, existence of a differentiable function X (¢) satisfying (1.6) is
obtained.

Finally, we shall prove that X is of class C*°. Since X'(t) =
X (t)02(t), the derivative X’ of X is continuous. Hence X is of
class C1, and so is X (¢)£2(¢). Thus we have that X'(¢) is of class
C', and then X is of class C2. Iterating this argument, we can
prove that X (¢) is of class C" for arbitrary r. O

Corollary 1.7. Let 2(t) be a matriz-valued C™-function de-
fined on an interval I. Then for each ty € I and Xo € M, (R),
there exists the unique matriz-valued C™-function X (t) = Xy, x, (t)
defined on I such that

dX (t)
dt

In particular, Xy, x,(t) is of class C* in Xy and t.

(1.8) = X(1)01),  X(t) = Xo.

Proof. We rewrite X (¢) in Proposition 1.6 as Y (t) = X, ia(t).
Then the function

(19) X(t) = X()Y(t) = XOth,id(t)7
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is desired one. Conversely, assume X (¢) satisfies the conclusion.
Noticing Y (¢) is a regular matrix for all ¢ because of Proposi-
tion 1.3,

satisfies
dw  dX dY
=yl XYy '=—vy!
dt dt ®) dt
=Xy ' - Xy 'vyovyl'=0.
Hence

W(t) =W(to) = X(to)Y (to) " = Xo.
Hence the uniqueness is obtained. The final part is obvious by

the expression (1.9). O

Proposition 1.8. Let 2(t) and B(t) be a matriz-valued C*-

functions defined on I. Then for each tyg € I and Xy € M, (R),

there exists the unique matriz-valued C*°-function defined on I

satisfying

dX(t)
dt

Proof. Rewrite X in Proposition 1.6 as Y (¢) := X, ;a(¢). Then

(1.10) = X))+ B(t),  X(to) = Xo.

(1.11) X(t) = (Xo + /tB(T)Y_l(T) d7> Y (t)

to

satisfies (1.10). Conversely, if X satisfies (1.10), W := XY !
satisfies

X' =WY+WY'=WY+WYR, XQ2+B=WY2+ B,
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and then we have W’ = BY ~1. Since W (t() = X,

t
W =Xo+ | B(r)Y"(r)dr.

to
Thus we obtain (1.11). O

Theorem 1.9. Let I and U be an interval and a domain in R™,
respectively, and let 2(t, &) and B(t, &) be matriz-valued C'*°-
functions defined on I x U (v = (a1,...,am)). Then for each
to €I, a €U and Xy € M, (R), there exists the unique matriz-
valued C™-function X (t) = Xy, x,,a(t) defined on I such that

(1.12) %t(t):X(t)Q(t,a)—kB(t?a), X (to) = Xo.

Moreover,
I xIxM,(R)xU> (tto, Xo, ) = Xy x,,a(t) € M, (R)
is C*°-map.

Proof. Let 2(t,&) := 2(t + to, ) and B(t, &) = B(t + to, o),
and let X (¢) := X (t + to). Then (1.12) is equivalent to

dX(t) =, ~ ~ -
(1.13) dt( ) _ X()2(t,&) + B(t,&), X(0) = Xo,
where & := (to,a1,...,q;,). There exists the unique solution

X(t) = Xid,XO,d(t) of (1.13) for each & because of Proposi-
tion 1.8. So it is sufficient to show differentiability with respect
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to the parameter &. We set Z = Z(t) as the unique solution of
p o ~
(1.14) E:ZQ+X—_+—_, Z(0)=0.

Then it holds that Z = 8)?/80@- (Problem 1-1). In particular,
by the proof of Proposition 1.8, it holds that

0X - 0Q(r,a) 0B(r,a))\ . _,
L=—= X Y dr|Y (t).
- (/ ( () 2 (r)dr] v (1)
Here, Y (t) is the unique matrix-valued C*°-function satisfying

Y/(t) = Y ()2(t, &), and Y (0) = id. Hence X is a C°°-function
in (t,&). O

Fundamental Theorem for Space Curves. As an appli-
cation, we prove the fundamental theorem for space curves. A
C>®-map 7: I — R3 defined on an interval I € R into R? is
said to be a regular curve if 4 # 0 holds on I. For a regular
curve 7(t), there exists a parameter change t = t(s) such that
(s) := ~(t(s)) satisfies |/ (s)| = 1. Such a parameter s is called
the arc-length parameter.

Let v(s) be a regular curve in R? parametrized by the arc-
length satisfying 7" (s) # 0 for all s. Then

)
Ol

forms a positively oriented orthonormal basis {e, n, b} of R3 for
each s. Regarding each vector as column vector, we have the

e(s) :=+'(s), n(s): b(s) := e(s) x n(s)
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matrix-valued function
(1.15) F(s) = (e(s),n(s),b(s)) € SO(3).

in s, which is called the Frenet frame associated to the curve .
Under the situation above, we set

K(s) = 17"(s)| >0,  7(s) = —(b'(s),n(s)),

which is called the curvature and torsion, respectively, of ~.
Using these quantities, the Frenet frame satisfies

0 —k O

(1.16) E:}'Q, N=|x 0 -7
ds

0 7 0

Proposition 1.10. The curvature and the torsion are invari-
ant under the transformation © — Ax + b of R® (A € SO(3),
b € R3). Conversely, two curves v1(s), y2(s) parametrized by
arc-length parameter have common curvature and torsion, there
exist A € SO(3) and b € R3 such that yo = Ay, + b.

Proof. Let k, 7 and F7 be the curvature, torsion and the Frenet
frame of 1, respectively. Then the Frenet frame of 7o = Ay, +b
(A €S0(3), b € R3) is Fo = AF;. Hence both F; and F; satisfy
(1.16), and then 77 and 72 have common curvature and torsion.

Conversely, assume 7; andys have common curvature and
torsion. Then the frenet frame F7, Fy both satisfy (1.16). Let
F be the unique solution of (1.16) with F(t9) = id. Then by
the proof of Corollary 1.7, we have F;(t) = F;(to)F(t) (j =
1,2). In particular, since F; € SO(3), Fa(t) = AFi(t) (A =
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Fa(to)Fi(to)~t € SO(3)). Comparing the first column of these,
v5(s) = A~i(t) holds. Integrating this, the conclusion follows.
O

Theorem 1.11 (The fundamental theorem for space curves).
For given C*°-functions k(s) and 7(s) defined on I such that
k(s) > 0 on I. Then there exists a space curve y(s) parametrized
by arc-length whose curvature and torsion are k and T, respec-
tively. Moreover, such a curve is unique up to transformation
z— Az +b (A€ SO(3), be R?) of R3.

Proof. We have already shown the uniqueness in Proposition 1.10.
We shall prove the existence: Let 2(s) be as in (1.16), and
F(s) the solution of (1.16) with F(sg) = id. Since {2 is skew-
symmetric, F(s) € SO(3) by Proposition 1.4. Denoting the
column vectors of F by e, n, b, and let

~(s) := / e(o) do.
S0
Then F is the frenet frame of v, and k, and 7 are the curvature
and torsion of +, respectively (Problem 1-2). O

Ezxercises
1-1 Verify that Z in (1.14) coincides with (“))Z'/(%zj.

1-2 Complete the proof of Theorem 1.11.



