Integrability Conditions

Let $\Omega(u, v)$ and $\Lambda(u, v)$ be $n \times n$-matrix valued C^{∞}-maps defined on a domain $U \subset \mathbb{R}^{2}$. In this section, we consider an initial value problem of a system of linear partial differential equations

$$
\begin{equation*}
\frac{\partial X}{\partial u}=X \Omega, \quad \frac{\partial X}{\partial v}=X \Lambda, \quad X\left(u_{0}, v_{0}\right)=X_{0} \tag{2.1}
\end{equation*}
$$

where $\left(u_{0}, v_{0}\right) \in U$ is a fixed point, X is an $n \times n$-matrix valued unknown, and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$.

Proposition 2.1. If a matrix-valued C^{∞}-function $X(u, v)$ defined on $U \subset \mathbb{R}^{2}$ satisfies (2.1) with $X_{0} \in \operatorname{GL}(n, \mathbb{R})$, then $X(u, v) \in \mathrm{GL}(n, \mathbb{R})$ for all $(u, v) \in U$. In addition, if Ω and Λ are skew-symmetric and $X_{0} \in \mathrm{SO}(n)$, then $X \in \mathrm{SO}(n)$ holds on U.

Proof. Take a smooth path $\gamma:[0,1] \rightarrow U$ joining $\left(u_{0}, v_{0}\right)$ and (u, v), and write $\gamma(t)=(u(t), v(t))^{4}$. Setting $\widetilde{X}(t):=X \circ \gamma(t)=$

[^0]$X(u(t), v(t)),(2.1)$ implies
$$
\frac{d \widetilde{X}}{d t}=\widetilde{X}\left(\frac{d u}{d t} \Omega+\frac{d v}{d t} \Lambda\right), \quad \widetilde{X}(0)=X_{0}
$$

Hence, by Proposition $1.3, \operatorname{det} \widetilde{X}(1) \neq 0$. The latter half of the statement follows from Proposition 1.4.

Lemma 2.2. If a matrix-valued C^{∞} function $X: U \rightarrow \mathrm{GL}(n, \mathbb{R})$ satisfies (2.1), it holds that

$$
\begin{equation*}
\Omega_{v}-\Lambda_{u}=\Omega \Lambda-\Lambda \Omega \tag{2.2}
\end{equation*}
$$

Proof. Differentiating the first (resp. second) equation of (2.1) by v (resp. u), we have

$$
\begin{aligned}
& X_{u v}=X_{v} \Omega+X \Omega_{v}=X\left(\Lambda \Omega+\Omega_{v}\right) \\
& X_{v u}=X_{u} \Lambda+X \Lambda_{u}=X\left(\Omega \Lambda+\Lambda_{u}\right)
\end{aligned}
$$

These two matrices coincide Since X is of class C^{∞}. Hence we have the conclusion.

The equality (2.2) is called the integrability condition or compatibility condition of (2.1).

Frobenius' theorem In this section, we shall prove the following

Theorem 2.3. Let $\Omega(u, v)$ and $\Lambda(u, v)$ be $n \times n$-matrix valued C^{∞}-functions defined on a simply connected domain $U \subset \mathbb{R}^{2}$
satisfying (2.2). Then for each $\left(u_{0}, v_{0}\right) \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique $n \times n$-matrix valued function $X: U \rightarrow$ $\mathrm{M}_{n}(\mathbb{R})$ (2.1). Moreover,

- if $X_{0} \in \operatorname{GL}(n, \mathbb{R}), X(u, v) \in \mathrm{GL}(n, \mathbb{R})$ holds on U,
- if $\operatorname{tr} \Omega=\operatorname{tr} \Lambda=0$ holds on U and $X_{0} \in \operatorname{SL}(n, \mathbb{R}), X(u, v) \in$ $\operatorname{SL}(n, \mathbb{R})$ holds on U,
- if Ω and Λ are skew-symmetric matrices, and $X_{0} \in \mathrm{SO}(n)$, $X(u, v) \in \mathrm{SO}(n)$ holds on U.
To prove Theorem 2.3, it is sufficient to show for the case $U=\mathbb{R}^{2}$. In fact, by Lemma 2.4 and Fact 2.5 below, we can replace U with \mathbb{R}^{2} by an appropriate coordinate change.
Lemma 2.4. Let $V \ni(\xi, \eta) \mapsto(u, v) \in U$ be a diffeomorphism between domains $V, U \subset \mathbb{R}^{2}$, and let $\Omega=\Omega(u, v)$ and $\Lambda=$ $\Lambda(u, v)$ be matrix-valued functions on U. Set

$$
\begin{align*}
& \widetilde{\Omega}(\xi, \eta):=\Omega(u(\xi, \eta), v(\xi, \eta)) \frac{\partial u}{\partial \xi}+\Lambda(u(\xi, \eta), v(\xi, \eta)) \frac{\partial v}{\partial \xi} \tag{2.3}\\
& \widetilde{\Lambda}(\xi, \eta):=\Omega(u(\xi, \eta), v(\xi, \eta)) \frac{\partial u}{\partial \eta}+\Lambda(u(\xi, \eta), v(\xi, \eta)) \frac{\partial v}{\partial \eta}
\end{align*}
$$

If a matrix-valued function $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfies $(2.1), \widetilde{X}(\xi, \eta)=$ $X(u(\xi, \eta), v(\xi, \eta))$ satisfies
(2.4) $\quad \frac{\partial \widetilde{X}}{\partial \xi}=\widetilde{X} \widetilde{\Omega}, \quad \frac{\partial \widetilde{X}}{\partial \eta}=\widetilde{X} \widetilde{\Lambda}, \quad \widetilde{X}\left(\xi_{0}, \eta_{0}\right)=X_{0}$,
where $\left(u\left(\xi_{0}, \eta_{0}\right), v\left(\xi_{0}, \eta_{0}\right)\right)=\left(u_{0}, v_{0}\right)$. Moreover, the integrability condition (2.2) of (2.1) is equivalent to that of (2.4).

Proof. The equation (2.1) can be considered as a equality of 1-forms

$$
d X=X \Theta, \quad \Theta:=\Omega d u+\Lambda d v
$$

which does not depend on a choice of coordinate systems. If we write

$$
\Theta=\Omega d u+\Lambda d v=\widetilde{\Omega} d \xi+\widetilde{\Lambda} d \eta
$$

$\Omega, \Lambda, \widetilde{\Omega}$ and $\widetilde{\Lambda}$ satisfy (2.3). Here, the integrability condition can be rewritten as

$$
d \Theta+\Theta \wedge \Theta=O
$$

which is an equality of 2 -forms. This does not depend on coordinates, the conclusion follows.
Fact 2.5. A simply connected domain in \mathbb{R}^{2} is diffeomorphic to \mathbb{R}^{2}.

In fact, the Riemann mapping theorem yields the fact above ${ }^{5}$.
Proof of Theorem 2.3. By Lemma 2.4 and Fact 2.5, we may assume $U=\mathbb{R}^{2},\left(u_{0}, v_{0}\right)=(0,0)$ without loss of generality.

Existence: By the fundamental theorem of linear ordinary differential equations (Corollary 1.7), there exists the unique $C^{\infty}{ }_{-} \operatorname{map} F: \mathbb{R} \rightarrow \mathrm{M}_{n}(\mathbb{R})$ such that

$$
\frac{d F}{d u}(u)=F(u) \Omega(u, 0) \quad F(0)=X_{0}
$$

${ }^{5}$ Identifying \mathbb{R}^{2} with the complex plane \mathbb{C}, a simply connected domain of $U=\mathbb{R}^{2}$ is conformally equivalent to the unit disc $D:=\{z \in \mathbb{C}| | z \mid<1\}$ or \mathbb{C}, because of the Riemann mapping theorem (cf. [2-3]). Though D and \mathbb{C} are not conformally equivalent, D and \mathbb{R}^{2} are diffeomorphic. Then any simply connected domain is diffeomorphic to \mathbb{R}^{2}.

For each $u \in \mathbb{R}$, we denote by $G^{u}(v)$ the unique solution of the ordinary differential equation

$$
\frac{d G^{u}}{d v}(v)=G^{u}(v) \Lambda(u, v), \quad G^{u}(0)=F(u)
$$

in v. Then the function $X(u, v):=G^{u}(v)$ is the desired one. In fact, the solution of a ordinary differential equation depends smoothly on the initial value, $X(u, v)$ is a matrix-valued C^{∞} function defined on \mathbb{R}^{2}. By definition of $G^{u}(v)$, we have
(2.5) $\quad \frac{\partial X}{\partial v}(u, v)=\frac{d G^{u}}{d v}(v)=G^{u}(v) \Lambda(u, v)=X(u, v) \Lambda(u, v)$.

Since X is $C^{\infty}, X_{u v}=X_{v u}$ holds. Then by the integrability condition (2.2), it holds that

$$
\begin{aligned}
\frac{\partial}{\partial v}\left(\frac{\partial X}{\partial u}-X \Omega\right) & =\frac{\partial}{\partial u} \frac{\partial X}{\partial v}-\frac{\partial X}{\partial v} \Omega-X \frac{\partial \Omega}{\partial v} \\
& =\frac{\partial}{\partial u}(X \Lambda)-\frac{\partial X}{\partial v} \Omega-X \frac{\partial \Omega}{\partial v} \\
& =\frac{\partial X}{\partial u} \Lambda+X \frac{\partial \Lambda}{\partial u}-\frac{\partial X}{\partial v} \Omega-X \frac{\partial \Omega}{\partial v} \\
& =X\left(\Lambda_{u}-\Omega_{v}\right)+\frac{\partial X}{\partial u} \Lambda-\frac{\partial X}{\partial v} \Omega \\
& =X\left(\Lambda_{u}-\Omega_{v}-\Lambda \Omega\right)+\frac{\partial X}{\partial u} \Lambda \\
& =-X \Omega \Lambda+\frac{\partial X}{\partial u} \Lambda \\
& =\left(\frac{\partial X}{\partial u}-X \Omega\right) \Lambda
\end{aligned}
$$

That is, for each fixed u, the map $H(v):=X_{u}(u, v)-X \Omega$ satisfies an ordinary differential equation in v as follows:

$$
\frac{d H}{d v}(u, v)=H(u, v) \Lambda(u, v) .
$$

Letting $v=0$, we have

$$
\begin{aligned}
H(u, 0) & =X_{u}(u, 0)-X(u, 0) \Omega(u, 0) \\
& =\left(G^{u}\right)_{u}(u, 0)-G^{u}(0) \Omega(u, 0) \\
& =F^{\prime}(u)-F(u) \Omega(u, 0)=O
\end{aligned}
$$

and then, by uniqueness of the solutions of initial value problems for ordinary differential equations, $H(u, v)=0$ holds. Since (u, v) is arbitrarily taken, we have

$$
\frac{\partial X}{\partial u}(u, v)=X(u, v) \Omega(u, v),
$$

that is, $X(u, v)$ is the solution of (2.1).
Uniqueness: Let X and \hat{X} be matrix-valued functions satisfying (2.1). Then $\hat{X}-X$ is a solution of (2.1) with $X_{0}=O$ since (2.1) is linear. Hence, to show the uniqueness, it is sufficient to show that the solution X of (2.1) with initial condition $X_{0}=O$ is the constant function $X(u, v)=O$.

Let X be such a solution of (2.1). Here, $X(0,0)=O$ as we have set $\left(u_{0}, v_{0}\right)=(0,0)$. For an arbitrary $(u, v) \in \mathbb{R}^{2}$, let $F(t):=X(t u, t v)$. Then

$$
\text { (2.6) } \begin{aligned}
\frac{d}{d t} F(t) & =u X_{u}(t u, t v)+v X_{v}(t u, t v) \\
& =X(t u, t v)(u \Omega(t u, t v)+v \Lambda(t u, t v))=F(t) \omega(t)
\end{aligned}
$$

holds, where $\omega(t)=u \Omega(t u, t v)+v \Lambda(t u, t v)$. Then the ordinary differential equation (2.6) for $F(t)$ in t, the uniqueness of solutions of ordinary differential equations yields $F(t)=O$ since $F(0)=X(0,0)=O$. In particular, we have $X(u, v)=F(1)=$ O. Since (u, v) has been taken arbitrarily, $X(u, v)=0$ holds for all $(u, v) \in \mathbb{R}^{2}$. Hence we have the uniqueness.

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$
\omega=\alpha(u, v) d u+\beta(u, v) d v
$$

defined on a simply connected domain $U \subset \mathbb{R}^{2}$ is closed, that is, $d \omega=0$ holds, then there exists a C^{∞}-function f on U such that $d f=\omega$. Such a function f is unique up to additive constants.
Proof. Since $d \omega=\left(\beta_{u}-\alpha_{v}\right) d u \wedge d v$, the assumption is equivalent to

$$
\begin{equation*}
\beta_{u}-\alpha_{v}=0 \tag{2.7}
\end{equation*}
$$

Consider a system of linear partial differential equations with unknown a 1×1-matrix valued function (i.e. a real-valued function) $\xi(u, v)$ as
$(2.8) \quad \frac{\partial \xi}{\partial u}=\xi \alpha, \quad \frac{\partial \xi}{\partial v}=\xi \beta, \quad \xi\left(u_{0}, v_{0}\right)=1$.
Then it satisfies (2.2) because of (2.7). Hence by Theorem 2.3, there exists a smooth function $\xi(u, v)$ satisfying (2.8). In particular, Proposition 1.3 yields $\xi=\operatorname{det} \xi$ never vanishes. Since
$\xi\left(u_{0}, v_{0}\right)=1>0$, this means that $\xi>0$ holds on U. Letting $f:=\log \xi$, we have the function f satisfying $d f=\omega$.

Next, we show the uniqueness: if two functions f and g satisfy $d f=d g=\omega$, it holds that $d(f-g)=0$. Hence by connectivity of $U, f-g$ must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^{2} with the complex plane \mathbb{C}. It is well-known that a function
(2.9) $\quad f: U \ni u+\mathrm{i} v \longmapsto \xi(u, v)+\mathrm{i} \eta(u, v) \in \mathbb{C} \quad(\mathrm{i}=\sqrt{-1})$
defined on a domain $U \subset \mathbb{C}$ is holomorphic if and only if it satisfies the following relation, called the Cauchy-Riemann equations:

$$
\begin{equation*}
\frac{\partial \xi}{\partial u}=\frac{\partial \eta}{\partial v}, \quad \frac{\partial \xi}{\partial v}=-\frac{\partial \eta}{\partial u} . \tag{2.10}
\end{equation*}
$$

Definition 2.7. A function $f: U \rightarrow \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^{2}$ is said to be harmonic if it satisfies

$$
\Delta f=f_{u u}+f_{v v}=0
$$

The operator Δ is called the Laplacian.
Proposition 2.8. If function f in (2.9) is holomorphic, $\xi(u, v)$ and $\eta(u, v)$ are harmonic functions.

Proof. By (2.10), we have

$$
\xi_{u u}=\left(\xi_{u}\right)_{u}=\left(\eta_{v}\right)_{u}=\eta_{v u}=\eta_{u v}=\left(\eta_{u}\right)_{v}=\left(-\xi_{v}\right)_{v}=-\xi_{v v}
$$

Hence $\Delta \xi=0$. Similarly,

$$
\eta_{u u}=\left(-\xi_{v}\right)_{u}=-\xi_{v u}=-\xi_{u v}=-\left(\xi_{u}\right)_{v}=-\left(\eta_{v}\right)_{v}=-\eta_{v v}
$$

Thus $\Delta \eta=0$.
Theorem 2.9. Let $U \subset \mathbb{C}=\mathbb{R}^{2}$ be a simply connected domain and $\xi(u, v)$ a C^{∞}-function harmonic on U^{6}. Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v)+\mathrm{i} \eta(u, v)$ is holomorphic on U.

Proof. Let $\alpha:=-\xi_{v} d u+\xi_{u} d v$. Then by the assumption,

$$
d \alpha=\left(\xi_{v v}+\xi_{u u}\right) d u \wedge d v=0
$$

holds, that is, α is a closed 1 -form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 2.6), there exists a function η such that $d \eta=\eta_{u} d u+\eta_{v} d v=\alpha$. Such a function η satisfies (2.10) for given ξ. Hence $\xi+\mathrm{i} \eta$ is holomorphic in $u+\mathrm{i} v$.

Example 2.10. A function $\xi(u, v)=e^{u} \cos v$ is harmonic. Set

$$
\alpha:=-\xi_{v} d u+\xi_{u} d v=e^{u} \sin v d u+e^{u} \cos v d v
$$

Then $\eta(u, v)=e^{u} \sin v$ satisfies $d \eta=\alpha$. Hence

$$
\xi+\mathrm{i} \eta=e^{u}(\cos v+\mathrm{i} \sin v)=e^{u+\mathrm{i} v}
$$

is holomorphic in $u+\mathrm{i} v$.
Definition 2.11. The harmonic function η in Theorem 2.9 is called the conjugate harmonic function of ξ.

[^1]The fundamental theorem for Surfaces. Let $p: U \rightarrow \mathbb{R}^{3}$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^{2}$. That is, $p=p(u, v)$ is a C^{∞}-map such that p_{u} and p_{v} are linearly independent at each point on U. Then $\nu:=$ $\left(p_{u} \times p_{v}\right) /\left|p_{u} \times p_{v}\right|$ is the unit normal vector field to the surface. The matrix-valued function $\mathcal{F}:=\left(p_{u}, p_{v}, \nu\right): U \rightarrow \mathrm{M}_{3}(\mathbb{R})$ is called the Gauss frame of p. We set

$$
\begin{align*}
d s^{2} & :=E d u^{2}+2 F d u d v+G d v^{2} \\
I I & :=L d u^{2}+2 M d u d v+N d v^{2} \tag{2.11}
\end{align*}
$$

where

$$
\begin{array}{rlrlrl}
E & =p_{u} \cdot p_{u} & F & =p_{u} \cdot p_{v} & & G=p_{v} \cdot p_{v} \\
L & =p_{u u} \cdot \nu & M & =p_{u v} \cdot \nu & & N=p_{v v} \cdot \nu .
\end{array}
$$

We call $d s^{2}$ (resp. II) the first (resp. second) fundamental form. Note that linear independence of p_{u} and p_{v} implies

$$
\begin{equation*}
E>0, \quad G>0 \quad \text { and } \quad E G-F^{2}>0 . \tag{2.12}
\end{equation*}
$$

Set

$$
\begin{align*}
& \Gamma_{11}^{1}:=\frac{G E_{u}-2 F F_{u}+F E_{v}}{2\left(E G-F^{2}\right)} \tag{2.13}\\
& \Gamma_{11}^{2}:=\frac{2 E F_{u}-E E_{v}-F E_{u}}{2\left(E G-F^{2}\right)} \\
& \Gamma_{12}^{1}=\Gamma_{21}^{1}:=\frac{G E_{v}-F G_{u}}{2\left(E G-F^{2}\right)}
\end{align*}
$$

$$
\begin{aligned}
\Gamma_{12}^{2} & =\Gamma_{21}^{2}:=\frac{E G_{u}-F E_{v}}{2\left(E G-F^{2}\right)} \\
\Gamma_{22}^{1} & :=\frac{2 G F_{v}-G G_{u}-F G_{v}}{2\left(E G-F^{2}\right)} \\
\Gamma_{22}^{2} & :=\frac{E G_{v}-2 F F_{v}+F G_{u}}{2\left(E G-F^{2}\right)}
\end{aligned}
$$

and

$$
A=\left(\begin{array}{ll}
A_{1}^{1} & A_{2}^{1} \tag{2.14}\\
A_{1}^{2} & A_{2}^{2}
\end{array}\right):=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

The functions $\Gamma_{i j}^{k}$ and the matrix A are called the Christoffel symbols and the Weingarten matrix．We state the following the fundamental theorem for surfaces，and give a proof（for a special case）in the following section．
Theorem 2.12 （The Fundamental Theorem for Surfaces）．Let $p: U \ni(u, v) \mapsto p(u, v) \in \mathbb{R}^{3}$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^{2}$ ．Then the Gauss frame $\mathcal{F}:=\left\{p_{u}, p_{v}, \nu\right\}$ satisfies the equations
（2．15）$\frac{\partial \mathcal{F}}{\partial u}=\mathcal{F} \Omega, \quad \frac{\partial \mathcal{F}}{\partial v}=\mathcal{F} \Lambda$,

$$
\Omega:=\left(\begin{array}{ccc}
\Gamma_{11}^{1} & \Gamma_{12}^{1} & -A_{1}^{1} \\
\Gamma_{11}^{2} & \Gamma_{12}^{2} & -A_{1}^{2} \\
L & M & 0
\end{array}\right), \quad \Lambda:=\left(\begin{array}{ccc}
\Gamma_{21}^{1} & \Gamma_{22}^{1} & -A_{2}^{1} \\
\Gamma_{21}^{2} & \Gamma_{22}^{2} & -A_{2}^{2} \\
M & N & 0
\end{array}\right)
$$

where $\Gamma_{j k}^{i}(i, j, k=1,2), A_{l}^{k}$ and L, M, N are the Christoffel symbols，the entries of the Weingarten matrix and the entries of the second fundamental form，respectively．

Theorem 2．13．Let $U \subset \mathbb{R}^{2}$ be a simply connected domain，E ， $F, G, L, M, N C^{\infty}$－functions satisfying（2．12），and $\Gamma_{i j}^{k}, A_{i}^{j}$ the functions defined by（2．13）and（2．14），respectively．If Ω and Λ satisfies

$$
\Omega_{v}-\Lambda_{u}=\Omega \Lambda-\Lambda \Omega
$$

there exists a parameterization $p: U \rightarrow \mathbb{R}^{3}$ of regular surface whose fundamental forms are given by（2．11）．Moreover，such a surface is unique up to orientation preserving isometries of \mathbb{R}^{3} ．

References

［2－1］梅原雅顕•山田光太郎：曲線と曲面一微分幾何的アプローチ（改訂版），裳華房，2014．
［2－2］Masaaki Umehara and Kotaro Yamada，Differential Geometry of Curves and Surfaces，World Scientific， 2017.
［2－3］Lars V．Ahlfors，Complex Analysis，Dover Publications， 1980.

Exercises

2－1 Let $\xi(u, v)=\log \sqrt{u^{2}+v^{2}}$ be a function defined on $U=$ $\mathbb{R}^{2} \backslash\{(0,0)\}$
（1）Show that ξ is harmonic on U ．
（2）Find the conjugate harmonic function η of ξ on

$$
V=\mathbb{R}^{2} \backslash\{(u, 0) \mid u \leqq 0\} \subset U
$$

（3）Show that there exists no conjugate harmonic func－ tion of ξ defined on U ．

[^0]: 19. June, 2018. (Revised: 26. June, 2018)
 ${ }^{4}$ Since U is connected, there exists a continuous path $\gamma:[0,1] \rightarrow U$ joining $\left(u_{0}, v_{0}\right)$ and (u, v). Then one can find a smooth curve $\tilde{\gamma}$ joining these points as follows: For each $t \in[0,1]$, there exists a positive number $\rho_{t}>0$ such that $B_{\rho_{t}}(\gamma(t)) \subset U$. Since $\gamma([0,1])$ is compact, there exists a finite sequence $0=t_{0}<t_{1}<\cdots<t_{N}=1$ such that $\gamma([0,1])=\cup_{j=0}^{N} B_{\rho_{t_{j}}}\left(\gamma\left(t_{j}\right)\right)$, where $B_{\varepsilon}(p)$ denotes a disk of radius ε centered at p. Choose $p_{j} \in B_{\rho_{t_{j-1}}}\left(\gamma\left(t_{j-1}\right)\right) \cap B_{\rho_{t_{j}}}\left(\gamma\left(t_{j}\right)\right)(j=1, \ldots, N)$. Then the polygonal line with vertices $\left\{\gamma(0), p_{1}, \ldots, p_{N}, \gamma(1)\right\}$ lies on U and a piecewise linear path joining $\gamma(0)=\left(u_{0}, v_{0}\right)$ and $\gamma(1)=(u, v)$. Modifying such a path at vertices, we have a smooth path joining $\gamma(0)$ and $\gamma(1)$ (cf. see [2-1, Appendix B-5]).
[^1]: ${ }^{6}$ The theorem holds under the assumption of C^{2}-differentiablity.

