Integrability Conditions

Let £2(u,v) and A(u,v) be nxn-matrix valued C*°-maps defined
on a domain U C R2. In this section, we consider an initial value
problem of a system of linear partial differential equations

X _
ou

X

(21) XQ, 87—)(/17 X(UO,’U()) :Xo,
v

where (ug, vg) € U is a fixed point, X is an n X n-matrix valued
unknown, and Xy € M, (R).

Proposition 2.1. If a matriz-valued C*®-function X (u,v) de-
fined on U C R? satisfies (2.1) with Xo € GL(n,R), then
X (u,v) € GL(n,R) for all (u,v) € U. In addition, if 2 and
A are skew-symmetric and Xo € SO(n), then X € SO(n) holds
on U.

Proof. Take a smooth path v: [0,1] — U joining (ug,v9) and
(u,v), and write y(t) = (u(t),v(t))*. Setting X (t) := X ov(t) =
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4Since U is connected, there exists a continuous path v: [0,1] — U
joining (up,vo) and (u,v). Then one can find a smooth curve 4 join-
ing these points as follows: For each ¢ € [0,1], there exists a positive
number p; > 0 such that By, (y(¢t)) C U. Since 7([0,1]) is compact,
there exists a finite sequence 0 = t9 < t1 < --- < ty = 1 such that
~([0,1]) = Uj-V:OBpt]_ (v(t4)), where Be(p) denotes a disk of radius € cen-
tered at p. Choose p; € Bpt],71 (v(tj—1)) N Bptj (v(t;)) (G = 1,...,N).
Then the polygonal line with vertices {v(0), p1,...,pn,7(1)} lies on U and
a piecewise linear path joining v(0) = (uo, vo) and (1) = (u,v). Modifying
such a path at vertices, we have a smooth path joining v(0) and (1) (cf.
see [2-1, Appendix B-5]).
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X (u(t),v(t)), (2.1) implies

% =X (durw d”A) . X(0) = X,.

Hence, by Proposition 1.3, det )?(1) # 0. The latter half of the
statement follows from Proposition 1.4. O

Lemma 2.2. If a matriz-valued C* function X : U — GL(n,R)
satisfies (2.1), it holds that

(2.2) Qy — Ay = QA — AL.

Proof. Differentiating the first (resp. second) equation of (2.1)
by v (resp. u), we have

Xuw = Xo 2+ X0, = X(AR + 2,),
Xvu - XuA + XAu = X(QA + Au)

These two matrices coincide Since X is of class C°°. Hence we
have the conclusion. O

The equality (2.2) is called the integrability condition or com-
patibility condition of (2.1).
Frobenius’ theorem In this section, we shall prove the fol-

lowing

Theorem 2.3. Let 2(u,v) and A(u,v) be n x n-matriz valued
C-functions defined on a simply connected domain U C R?




15 (20180703) MTH.B402; Sect. 2

satisfying (2.2). Then for each (ug,vo) € U and Xy € M, (R),
there exists the unique n X n-matriz valued function X: U —
M, (R) (2.1). Moreover,

e if Xo € GL(n,R), X(u,v) € GL(n,R) holds on U,
o iftr 2 =trA =0 holds onU and Xy € SL(n,R), X(u,v) €
SL(n,R) holds on U,

o if 2 and A are skew-symmetric matrices, and Xo € SO(n),
X (u,v) € SO(n) holds on U.

To prove Theorem 2.3, it is sufficient to show for the case
U = R2?. In fact, by Lemma 2.4 and Fact 2.5 below, we can
replace U with R? by an appropriate coordinate change.

Lemma 2.4. Let V 5 (§,n) — (u,v) € U be a diffeomorphism
between domains V, U C R2, and let 2 = Q(u,v) and A =
A(u,v) be matriz-valued functions on U. Set

Qe = fz(u@,n),v(g,n))% T A€ ) v(En) 2L

A&, n) == 2(u(&,n), v(E, n>)—n+A( w(&,n),v(&,n)) A

55
ov
on’

(2.3)

If a matriz-valued function X : U — M, (R) satisfies (2.1), X(£,n) =

X(u(&,m),v(&,m)) satisfies

X X
2.4 = X.Q = XA X X
( ) 85 8 (503 770) 05
where ( (&o,m0),v 507770)) (up,vp). Moreover, the integrabil-
ity condition (2.2) of (2.1) is equivalent to that of (2.4).
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Proof. The equation (2.1) can be considered as a equality of
1-forms

dX = X6, O = 2du+ Adv,

which does not depend on a choice of coordinate systems. If we
write

O =0du+ Adv = Qd¢ + Adn,

2, A, 2 and A satisfy (2.3). Here, the integrability condition
can be rewritten as

dO+O /N6 =0,

which is an equality of 2-forms. This does not depend on coor-
dinates, the conclusion follows. ]

Fact 2.5. A simply connected domain in R? is diffeomorphic to
R2.

In fact, the Riemann mapping theorem yields the fact above®.

Proof of Theorem 2.3. By Lemma 2.4 and Fact 2.5, we may as-
sume U = R20 (ug,vp) = (0,0) without loss of generality.

Ezistence: By the fundamental theorem of linear ordinary
differential equations (Corollary 1.7), there exists the unique
C*-map F: R — M, (R) such that

) = P 2(w0)  F(0) = X,
5Identifying R? with the complex plane C, a simply connected domain
of U = R? is conformally equivalent to the unit disc D := {2z € C||z| < 1}
or C, because of the Riemann mapping theorem (cf. [2-3]). Though D and
C are not conformally equivalent, D and R? are diffeomorphic. Then any
simply connected domain is diffeomorphic to R2.
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For each u € R, we denote by G*(v) the unique solution of the
ordinary differential equation
aGg"
dv
in v. Then the function X (u,v) := G"(v) is the desired one.
In fact, the solution of a ordinary differential equation depends

smoothly on the initial value, X (u,v) is a matrix-valued C'*°
function defined on R2. By definition of G*(v), we have

(2.5) aa—)v((u,v) = dg)u (v) = G*(vV)A(u,v) = X (u,v)A(u, ).

Since X is C*°, Xy, = Xy holds. Then by the integrability
condition (2.2), it holds that
0 (0X 00X 090X on
&)(E)U_X ):auav‘av X
0 0X on
=—(XA) - —N-X—
5 (XA
_0X n oA o0X 00
- Ou Oou  Ov v
=X(A, — 02, —AQ)+ —A
U

=-XNA+ 8—X/1
ou

0X
(2 xo)a

(v) = G*(0)A(u,v),  G*(0) = F(u)
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That is, for each fixed u, the map H(v) = X,(u,v) — X2
satisfies an ordinary differential equation in v as follows:

dH
%(m v) = H(u,v)A(u,v).

Letting v = 0, we have
H(u,0) = X, (u,0) — X (u,0)2(u,0)
= (G")u(u,0) — G*(0)£2(u,0)
= F'(u) — F(u)2(u,0) = O

and then, by uniqueness of the solutions of initial value problems
for ordinary differential equations, H(u,v) = 0 holds. Since
(u,v) is arbitrarily taken, we have

%(u, v) = X(u,v)2(u,v),
that is, X (u,v) is the solution of (2.1).

Uniqueness: Let X and X be matrix-valued functions satis-
fying (2.1). Then X — X is a solution of (2.1) with X, = O since
(2.1) is linear. Hence, to show the uniqueness, it is sufficient to
show that the solution X of (2.1) with initial condition Xy = O
is the constant function X (u,v) = O.

Let X be such a solution of (2.1). Here, X(0,0) = O as
we have set (ug,vo) = (0,0). For an arbitrary (u,v) € R? let
F(t) :== X (tu,tv). Then

(2.6) %F(t) = uX, (tu, tv) + vX, (tu, tv)

= X (tu, tv)(u2(tu, tv) + vA(tu, tv)) = F(t)w(t)
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holds, where w(t) = uf2(tu, tv) + vA(tu,tv). Then the ordinary
differential equation (2.6) for F'(t) in ¢, the uniqueness of so-
lutions of ordinary differential equations yields F(t) = O since
F(0) = X(0,0) = O. In particular, we have X (u,v) = F(1) =
O. Since (u,v) has been taken arbitrarily, X (u,v) = 0 holds for
all (u,v) € R2. Hence we have the uniqueness. O

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form
w = a(u,v)du+ B(u,v) dv

defined on a simply connected domain U C R? is closed, that is,
dw = 0 holds, then there exists a C*°-function f on U such that
df = w. Such a function f is unique up to additive constants.

Proof. Since dw = (8, —aw,) duidv, the assumption is equivalent
to

(2.7) Bu — 0ty = 0.

Consider a system of linear partial differential equations with
unknown a 1 x 1-matrix valued function (i.e. a real-valued func-
tion) &(u,v) as

0 0
08  E=ta  So=th Euw)=1

Then it satisfies (2.2) because of (2.7). Hence by Theorem 2.3,
there exists a smooth function £(u,v) satisfying (2.8). In par-
ticular, Proposition 1.3 yields £ = det £ never vanishes. Since
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&(up,v9) = 1 > 0, this means that & > 0 holds on U. Letting
f :=1log&, we have the function f satisfying df = w.

Next, we show the uniqueness: if two functions f and g
satisfy df = dg = w, it holds that d(f — ¢g) = 0. Hence by
connectivity of U, f — ¢g must be constant. O

Application: Conjugation of Harmonic functions. In
this paragraph, we identify R? with the complex plane C. It
is well-known that a function

(2.9) f:U>su+iv— &(u,v) +in(u,v) € C (i=+-1)

defined on a domain U C C is holomorphic if and only if it sat-
isfies the following relation, called the Cauchy-Riemann equa-
tions:

9 _On 08 _ On

ou O’ Ov ou’

Definition 2.7. A function f: U — R defined on a domain
U c R? is said to be harmonic if it satisfies

A.f:fuu+fvv =0.

The operator A is called the Laplacian.

(2.10)

Proposition 2.8. If function f in (2.9) is holomorphic, &(u,v)
and n(u,v) are harmonic functions.

Proof. By (2.10), we have

guu = (gu)u = (nv)u = Nvu = Nuv = (nu)v = (_gv)v = —Quv-
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Hence A¢ = 0. Similarly,

Nuuw = (_gv)u = _gvu = _fuv = _(fu)v = _(nv)v = —Nyv-
Thus Anp = 0. O

Theorem 2.9. Let U C C = R? be a simply connected domain
and &(u,v) a C*®-function harmonic on U®. Then there erists
a C* harmonic function n on U such that &(u,v) + in(u,v) is
holomorphic on U.

Proof. Let a := —&, du + &, dv. Then by the assumption,
do = &y + Euu) duNdv =0

holds, that is, « is a closed 1-form. Hence by simple connectivity
of U and the Poincaré’s lemma (Theorem 2.6), there exists a
function n such that dn = n, du + 1, dv = «. Such a function
7 satisfies (2.10) for given . Hence £ + in is holomorphic in
u + iv. O

Example 2.10. A function £(u,v) = €* cosv is harmonic. Set
a:= =& du+ &, dv=e"sinvdu+ e" cosvdv.
Then n(u,v) = e"sinwv satisfies dn = «. Hence
£ +in = e*(cosv + isinv) = e
is holomorphic in u + iv.

Definition 2.11. The harmonic function n in Theorem 2.9 is
called the conjugate harmonic function of &.

6The theorem holds under the assumption of C2-differentiablity.
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The fundamental theorem for Surfaces. Let p: U — R?
be a parametrization of a regular surface defined on a domain
U C R2. That is, p = p(u,v) is a C*°-map such that p, and
p, are linearly independent at each point on U. Then v :=
(pu X Pv)/|Pu X Poul is the unit normal vector field to the surface.
The matrix-valued function F := (py,pv,v): U — M3(R) is
called the Gauss frame of p. We set

ds® := E du® + 2F dudv + G dv?,

(2.11) 9 )
Il .= Ldu® +2M dudv + N dv*,

where

E:pu'pu F:pu'pv G:pv‘pv
L=py, v M =py, v N =pyy - 1.

We call ds? (resp. II) the first (vesp. second) fundamental form.
Note that linear independence of p, and p, implies

(2.12) E>0, G>0 and EG-F?>0.
Set
GE, —2FF,+ FE

2.13 r=- - i
(2.13) 1 2(EG — F2)

r2 . 2BF,— EE, — FE,

e 2(EG — F2)

E,—F
I :F2111:G > e

2(EG — F2)’
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EG, - FE
2 2 u v
Iy =1 = 2(EG — F2?)’
r . 2GF, = GG, — FG,
2 2(EG — F?2)
2 . BGy —2FF, + FG,
2 2(EG — F?)
and
(Ab AN (B F\'(L M
(2.14) A_<A% 2)=\F ¢ v N

The functions I Z’; and the matrix A are called the Christoffel
symbols and the Weingarten matriz. We state the following the
fundamental theorem for surfaces, and give a proof (for a special

case) in the following section.

Theorem 2.12 (The Fundamental Theorem for Surfaces). Let
p: U 3 (u,v) = p(u,v) € R3 be a parametrization of a regular
surface defined on a domain U C R%. Then the Gauss frame
F :={pu,pv, v} satisfies the equations

oF oF
(2.15) ey = F1, 90 = FA,
F111 F112 *A% F211 F212 *Aé
2:= F121 F122 *A% , A= F221 F222 *A% )
L M 0 M N 0

where F;k (i,5,k = 1,2), AF and L, M, N are the Christoffel
symbols, the entries of the Weingarten matriz and the entries
of the second fundamental form, respectively.
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Theorem 2.13. Let U C R? be a simply connected domain, E,
F, G, L, M, N C*®-functions satisfying (2.12), and FZ];, Al the
functions defined by (2.13) and (2.14), respectively. If 2 and A
satisfies

2, — Ay = QA — AL,

there erxists a parameterization p: U — R3 of regular surface
whose fundamental forms are given by (2.11). Moreover, such a
surface is unique up to orientation preserving isometries of R3.
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FExercises

2-1 Let &(u,v) = log vu? + v? be a function defined on U =
R2\ {(0,0)}

(1) Show that £ is harmonic on U.

(2) Find the conjugate harmonic function 7 of £ on
V =R*\ {(x,0)|u<0}CU.

(3) Show that there exists no conjugate harmonic func-
tion of ¢ defined on U.



