幾何学概論第一(MTH.B211)

平面曲線の基本定理

山田光太郎

kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2021/geom-1/

東京工業大学理学院数学系

2021/10/14

問題 1-1

問題

区間 $J = [0, \pi]$ 上の C^{∞} -級関数 $f_n(x) := \frac{1}{n} \sin nx$ (n = 1, 2, ...)と定数関数 $f_{\infty}(x) = 0$ を考える.

- 1. 関数列 $\{f_n\}$ は f_∞ に一様収束することを示しなさい.
- 2. 曲線 $\gamma_n(x) := {}^t(x, f_n(x))$ の弧長は $\gamma_{\infty}(x) = {}^t(x, 0)$ の弧長に 収束しないことを示しなさい。

問題 1-2

問題

 \mathbb{R}^3 の単位ベクトル v に対して,原点を通り v に直交する平面 $\Pi_{\boldsymbol{v}}$ への正射影を $\pi_{\boldsymbol{v}}(\boldsymbol{x}) := \boldsymbol{x} - (\boldsymbol{x} \cdot \boldsymbol{v}) v$ と書く.零でない二つの 定数 a,b に対して曲線 $\gamma \colon \mathbb{R} \ni t \mapsto {}^t(a\cos t,a\sin t,bt) \in \mathbb{R}^3$ の 正射影 $\gamma_{\boldsymbol{v}}(t) := \pi_{\boldsymbol{v}} \circ \gamma(t)$ が t=0 に特異点をもつような v を求めなさい.

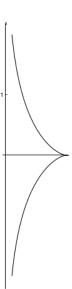
問題 1-3

問題

 $J=(0,\infty)$ 上で定義された曲線 $\gamma(t)={}^t(\operatorname{sech} t, t-\tanh t)$ の弧 長パラメータ表示を求めなさい.

追跡線 tractrix





特異点

定義 (定義 1.10)

曲線の C^{∞} -級パラメータ表示 $\gamma: J \to \mathbb{R}^n$ において $\dot{\gamma}(t_0) = \mathbf{0}$ が 成り立つとき t_0 をパラメータ表示 γ の特異点という. 特異点を もたないパラメータ表示を曲線の正則なパラメータ表示、略して 正則曲線という. とくに $|\dot{\gamma}| = 1$ のとき弧長パラメータ表示と いう

弧長パラメータ

曲線のパラメータ表示 $\gamma: J \ni s \mapsto \gamma(s) \in \mathbb{R}^n$ が 弧長パラメータ表示であるとは、 $|\gamma'(s)|=1$ が各 $s\in J$ に対して 成り立つことである。このときsを弧長パラメータという。

命題

正則曲線 $\gamma: J \to \mathbb{R}^n$ に対して、これとパラメータ変換で移り合 う弧長によりパラメータ表示された曲線 $\tilde{\gamma}: J' \to \mathbb{R}^n$ が存在する.

弧長パラメータ

命題

弧長パラメータは定数の差を除いて一意的である.