幾何学概論第一(MTH.B211)

平面曲線の大域的性質

山田光太郎

kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2021/geom-1/

東京工業大学理学院数学系

2021/11/11

問題

弧長パラメータで表示された平面曲線 $\gamma(s)$ の曲率をを κ , $P:=\gamma(s_0)$ における曲率円を C_P と書く.

- 1. s_0 における κ の微分係数 $\kappa'(s_0)$ が零でないとき, γ は s_0 において C_P を横切る,すなわち十分小さい正の数 ε で $s \in (s_0 \varepsilon, s_0)$ で $\gamma(s)$ は C_P の内側(外側), $s \in (s_0, s_0 + \varepsilon)$ で $\gamma(s)$ は C_P の外側(内側)にあるようなも のが存在することを示しなさい.
- 2. $\kappa'(s_0) = 0$ のとき, γ が s_0 において C_P を横切る例, 横切らないような例を1つずつ挙げなさい.

問題

正則曲線 γ の点 $P = \gamma(t_0)$ における曲率円を C_P とする. $\lceil C_P \rangle$ と γ が P において 3 次以上の接触をする」という条件は, \mathbb{R}^2 の変換 $\delta_k \colon x \mapsto kx$, $\iota \colon x \mapsto \frac{x}{|x|^2}$ によって保たれることを示しなさい. ただし k は零でない定数, ι の場合は P が座標原点でないものとする.

幾何学概論第一 平面曲線の大域的性質 2021/11/1

 $\gamma(s)$: 平面曲線;s: 弧長;(e, n): フルネ枠

$$\gamma' = e, \qquad e' = \kappa n \qquad n' = -\kappa e$$

 $\gamma = \sigma e + \rho n$ とおく.

問題

正則とは限らない平面曲線 $\gamma(t)$ に関する条件「 $\dot{\gamma}(t_0) = \mathbf{0}$ かつ $\det(\ddot{\gamma}(t_0), \ddot{\gamma}(t_0)) \neq 0$ 」は曲線のパラメータ変換と \mathbb{R}^2 の $P := \gamma(t_0)$ の近傍における座標変換によらないことを示しなさい.

座標変換

定義

領域 $U\subset\mathbb{R}^m$ から領域 $V\subset\mathbb{R}^m$ への全単射 $\Phi\colon U\to V$ が微分同相写像または座標変換であるとは, Φ と Φ^{-1} がともに C^∞ -級となることである.

座標変換

例

- ▶ \mathbb{R} から \mathbb{R} への写像 $x \mapsto \sinh x$ は微分同相写像である.
- ▶ \mathbb{R} から \mathbb{R} への写像 $x \mapsto x^3$ は微分同相写像でない.
- ▶ $(0,\infty) \times \mathbb{R}$ から $\mathbb{R}^2 \setminus \{(0,0)\}$ への写像 ${}^t(r,\theta) \mapsto {}^t(r\cos\theta,r\sin\theta) \in \mathbb{R}^2$ は微分同相写像でない.
- \blacktriangleright $(0,\infty) \times (-\pi,\pi)$ から $\mathbb{R}^2 \setminus \{(x,0); x \leq 0\}$ への写像 $(r,\theta) \mapsto (r\cos\theta, r\sin\theta) \in \mathbb{R}^2$ は微分同相写像である.

問題

幾何学概論第一

正則とは限らない平面曲線 $\gamma(t)$ に関する条件「 $\dot{\gamma}(t_0) = \mathbf{0}$ かつ $\det(\ddot{\gamma}(t_0), \ddot{\gamma}(t_0)) \neq 0$ 」は曲線のパラメータ変換と \mathbb{R}^2 の $P := \gamma(t_0)$ の近傍における座標変換によらないことを示しなさい.