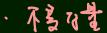
幾何学概論第一(MTH.B211)

ユークリッド空間の曲線

山田光太郎


kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2022/geom-1/

東京工業大学理学院数学系

2022/10/06

लि धल रिक्ष एक भन्ते?

定理 (命題 1.3) 合同多班 ユークリッド空間 \mathbb{R}^n の等長変換は $\mathbb{R}^n i x\longmapsto Ax+a\in\mathbb{R}^n$ $A \in \mathcal{O}(n)$, $oldsymbol{a} \in \mathbb{R}^n$ の形に表される # Ctral ovthogonal matrices

ユークリッド空間

定義

- 1. ユークリッド空間: \mathbb{R}^n に<u>標準的</u>な内積 "·" を与えたもの.
- 2. 大きさ: $v \in \mathbb{R}^n$ に対して $|v| = \sqrt{v \cdot v}$.
- 3. 角度 $: oldsymbol{v}, oldsymbol{w} \in \mathbb{R}^n \setminus \{oldsymbol{0}\}$ に対して

$$\angle(\boldsymbol{v}, \boldsymbol{w}) := \cos^{-1} \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{|\boldsymbol{v}| |\boldsymbol{w}|}$$

4. 2点 P, Q $\in \mathbb{R}^n$ に対して $d(P,Q) = |\overrightarrow{PQ}|$.

注:

- $v \cdot w = v \cdot v$
- $ightharpoonup (\mathbb{R}^n,d)$ は距離空間.

直交行列

定義

実数を成分とする n 次正方行列が直交行列であるとは

$${}^tAA = A^tA = I$$
 (I は n 次単位行列)

- ▶ 直交行列 \Leftrightarrow 内積を保つ線形変換: $(Av) \cdot (Aw) = v \cdot w$
- lacktriangle 直交行列 \Leftrightarrow 大きさを保つ線形変換:|Av|=|v|
- lackbox $m{a_1}\ldots,m{a_n}$ が直交行列 $\Leftrightarrow \{m{a}_1,\ldots,m{a}_n\}$ が \mathbb{R}^n の正規直交系
 - A 34 47 LIV

直交群

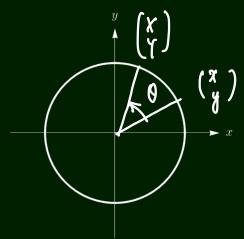
命題

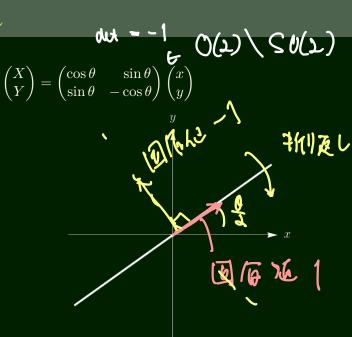
直交行列の行列式は1または-1である.

$$O(n) := \{n \times \overline{\text{post}}\}$$
 直交群 $SO(n) := \{A \in O(n); \det A = 1\}$ 特殊直交群

- ightharpoonup O(n) は行列の積に関して群をなす.
 - ▶ $A, B \in O(n) \Rightarrow AB \in O(n)$ (結合則 (AB)C = A(BC)).
 - $I \in O(n)$
 - $ightharpoonup A \in \mathcal{O}(n) \Rightarrow A^{-1} \in \mathcal{O}(n).$
- ightharpoonup $\mathrm{SO}(n)$ は行列の積に関して群をなす($\mathrm{O}(n)$ の部分群)

2次直交行列


命題


$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} ; \theta \in \mathbb{R} \right\},$$

$$O(2) = SO(2) \cup \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} ; \theta \in \mathbb{R} \right\}$$

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

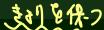
3次直交行列

問題

$$A \in SO(3)$$
 ならば、ある $P \in SO(3)$ が存在して しまっし $PAP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$.

- ightharpoonup A の固有値の一つは 1. その単位固有ベクトルを a_1 とする.
- ▶ a_1 に直交する単位ベクトル a_2 をひとつとる.
- ▶ $a_3 = a_1 \times a_2$ (ベクトル積) とする.
- $ightharpoonup P = (a_1, a_2, a_3)$ とおく.

等長変換


定義

定義 $f: \mathbb{R}^n \to \mathbb{R}^n$ が等長変換であるとは

$$d(f(P), f(Q)) = d(P, Q)$$
 $(P, Q \in \mathbb{R}^n)$

<u>が成</u>り立つこと.

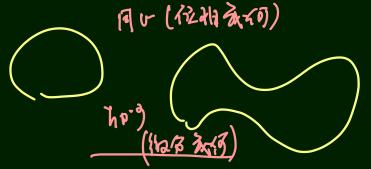
 $ightharpoonup \mathbb{R}^n$ の等長変換全体は写像の合成に関して群をなす.

補題

直交行列 $A \in O(n)$, $\boldsymbol{a} \in \mathbb{R}^n$ に対して写像

$$f_{A,\boldsymbol{a}} \colon \mathbb{R}^n \ni \boldsymbol{x} \longmapsto f_{A,\boldsymbol{a}}(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{a} \in \mathbb{R}^n$$

は等長変換.


等長変換の決定

定理

ユークリッド空間 \mathbb{R}^n の等長変換は

$$f: \mathbb{R}^n \ni \boldsymbol{x} \longmapsto A\boldsymbol{x} + \boldsymbol{a} \in \mathbb{R}^n \qquad A \in \mathcal{O}(n), \quad \boldsymbol{a} \in \mathbb{R}^n$$

の形に表される.

合同変換

 \mathbb{R}^n の等長変換を合同変換ということもある.等長変換

- $oldsymbol{x}\mapsto Aoldsymbol{x}+oldsymbol{a}$ ($A\in\mathrm{O}(n),\ oldsymbol{a}\in\mathbb{R}^n$) が
 - ► 向きを保つ合同変換 ⇔ (A) = SO(n). **M=2** 【 **9 (4) (4) (4) (7) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1**
 - ▶ 向きを反転する合同変換 \Leftrightarrow $A \in O(n) \setminus SO(n)$.

1=2 thus