幾何学概論第一(MTH.B211)

空間曲線

山田光太郎

kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2022/geom-1/

東京工業大学理学院数学系

2022/11/10

フルネ枠

- $ightharpoonup \gamma(s)$:空間曲線;s:弧長パラメータ
- $e(s) := \frac{d\gamma}{ds}(s) = \gamma'(s)$:単位接ベクトル

定義

$$\kappa(s) := \left| \frac{de}{ds}(s) \right| = |\gamma''(s)| (\ge 0) \quad \text{im}$$

補題

$$\gamma'(s) \perp \gamma''(s)$$

▶ 以下 $\kappa(s) > 0$ を仮定する.

フルネ枠

- $ightharpoonup \gamma(s)$:空間曲線;s:弧長パラメータ
- $ightharpoonup e(s) := \gamma'(s)$:単位接ベクトル
- ▶ $\kappa(s) := |e'(s)| = |\gamma''(s)|$: 曲率
- ▶ $\kappa(s) > 0$ を仮定する

定義

$$m{n}(s) := rac{1}{\kappa(s)} m{e}'(s) = rac{\gamma''(s)}{|\gamma''(s)|}$$
 単位主法線ベクトル $m{b}(s) := m{e}(s) imes m{n}(s)$ 単位従法線ベクトル $au(s) := -m{b}'(s) \cdot m{n}(s)$ 捩率 $\mathcal{F}(s) := (m{e}(s), m{n}(s), m{b}(s))$ フルネ枠

フルネ枠

- $ightharpoonup \gamma(s)$:空間曲線;s:弧長パラメータ
- $e(s) := \gamma'(s)$:単位接ベクトル
- $ightharpoonup \kappa(s) := |e'(s)| = |\gamma''(s)|$:曲率 (> 0 を仮定)
- $m{n}(s) := rac{m{e}'(s)}{\kappa(s)}$:単位主法線ベクトル
- $m{b}(s) := m{e}(s) imes m{n}(s)$:単位従法線ベクトル
- ▶ $\mathcal{F}(s) := (\boldsymbol{e}(s), \boldsymbol{n}(s), \boldsymbol{b}(s))$:フルネ枠
- ▶ $\tau(s) := -\mathbf{b}'(s) \cdot \mathbf{n}(s)$: 捩率

補題

 $\mathcal{F}(s) \in \mathrm{SO}(3)$; $\Omega(s) := \mathcal{F}(s)^{-1} \mathcal{F}'(s)$ は交代行列

フルネ・セレの公式

- $ightharpoonup \gamma(s)$:空間曲線;s:弧長パラメータ;曲率 $\kappa(s)>0$
- **>** $\mathcal{F}(s) := (\boldsymbol{e}(s), \boldsymbol{n}(s), \boldsymbol{b}(s))$: フルネ枠
- $au(s) := -\boldsymbol{b}'(s) \cdot \boldsymbol{n}(s)$

定理 (フルネ・セレの公式; 定理 4.2)

$$\frac{d\mathcal{F}}{ds} = \mathcal{F}\Omega \qquad \left(\Omega = \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}\right)$$

フルネ・セレの公式

- $ightharpoonup \gamma(s)$:空間曲線;s:弧長パラメータ
- $\mathcal{F} := (e, n, b)$: フルネ枠; $\kappa > 0$:曲率; τ :捩率

定理 (フルネ・セレの公式; 定理 4.2)

$$e' = \kappa n,$$
 $n' = -\kappa e + \tau n,$ $b' = -\tau n.$

フルネ・セレの公式 (例題)

$$e' = \kappa n, \qquad n' = -\kappa e + \tau n, \qquad b' = -\tau n.$$

定理

捩率が恒等的に零である空間曲線は平面曲線である.

幾何学概論第一 空間曲線 2022/11

例:つるまき線(常螺線; helix) 例5.6

 $a \neq 0, b \in \mathbb{R}$:

$$\gamma(t) = {}^{t} \left(a \cos t, a \sin t, bt \right)$$

$$\tilde{\gamma}(s) = {}^{t} \left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c} \right) \qquad \left(c = \sqrt{a^2 + b^2} \right)$$

$$\Rightarrow \qquad \kappa = |a|/c^2, \quad \tau = b/c^2.$$

幾何学概論第一 空間曲線 2022,

例:ブーケの公式

系 (系 5.3; ブーケの公式)

$$\gamma(s) = \gamma(s_0) + (s - s_0)\mathbf{e}_0 + \frac{1}{2}(s - s_0)^2 \kappa_0 \mathbf{n}_0$$

$$+ \frac{1}{6}(s - s_0)^3 (-\kappa_0^2 \mathbf{e}_0 + \kappa_0' \mathbf{n}_0 + \kappa_0 \tau_0 \mathbf{b}_0)$$

$$+ o((s - s_0)^3) \quad (s \to s_0)$$

| 幾何学機論第一 空間曲線 2022/11/

例:ブーケの公式

- $\gamma(s_0)$ を通り、 $e(s_0)$ 、 $n(s_0)$ に平行な($b(s_0)$ に垂直な)平面 $e(s_0)$ の $e(s_0)$ における接触平面という.
- $\gamma(s_0)$ を通り、 $n(s_0)$ 、 $b(s_0)$ に平行な($e(s_0)$ に垂直な)平面 $e(s_0)$ の $e(s_0)$ における法平面という.
- $\gamma(s_0)$ を通り、 $b(s_0)$ 、 $e(s_0)$ に平行な($n(s_0)$ に垂直な)平面 e_0 の e_0 における展直平面という.

系 (系 5.4)

空間曲線 $\gamma(s)$ の像の,曲率が零でない点 $\gamma(s_0)$ における接触平面,展直平面への正射影は s_0 の近くで正則曲線を与える.一方,法平面のへの正射影は s_0 に特異点をもつ.

空間曲線の基本定理(次回予告)

定理 (空間曲線の基本定理)

区間 $J \subset \mathbb{R}$ 上で定義された 2 つの C^{∞} -級関数 κ , τ が与えられ, とくに $\kappa > 0$ が J 上で成り立っているとする.このとき,弧長によりパラメータづけられた C^{∞} -級の空間曲線 $\gamma \colon J \to \mathbb{R}^3$ で,曲率,捩率がそれぞれ κ , τ となるものが存在する.さらにそのような曲線は変換 $\gamma \mapsto A\gamma + a$ $(A \in \mathrm{SO}(3), a \in \mathbb{R}^3)$ を除いて一意的である.

問題 5-1

問題

$$\gamma(s) = t \left(\tan^{-1} s, \frac{1}{\sqrt{2}} \log(1 + s^2), s - \tan^{-1} s \right)$$

- 1. s は γ の弧長パラメータであることを確かめなさい.
- 2. γ の曲率と捩率を求めなさい.
- 3. s によらず γ の速度ベクトルと一定の角をなす単位ベクトル v を求めなさい.

幾何学概論第一 空間曲線 2022/11/

問題 5-2

問題

- ▶ $\gamma(s)$:空間曲線;s:弧長
- \triangleright (e, n, b): フルネ枠.
- $\tilde{\gamma}(s) := \gamma(s) + \lambda(s) \boldsymbol{n}(s)$ は次を満たす:
 - $-\tilde{\gamma}(s)$ は正則曲線
 - ỹ', ỹ" は一次独立
 - $-\tilde{\gamma}$ の従法線ベクトル $\tilde{\boldsymbol{b}}(s)$ は $\boldsymbol{n}(s)$ と平行

このとき

- 1. λ は零でない定数であることを示しなさい.
- 2. γ の曲率 κ , 捩率 τ および λ が満たす関係式を求めなさい.

幾何学概論第一 空間曲線 2022/11/10 13 / 14