幾何学概論第一(MTH.B211)

陰関数定理

山田光太郎

kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2022/geom-1/

東京工業大学理学院数学系

2022/11/24

陰関数定理

定理(陰関数定理;定理7.1)

- $ightharpoonup F: \mathbb{R}^n \supset U \to \mathbb{R}: C^{\infty}$
- ► F(P) = 0, $\partial F/\partial x^n(P) \neq 0$ ($P \in U$)

 \Rightarrow

- 1. $\exists V \subset U : P = {}^t(p_1, \ldots, p_n)$ の近傍
- 2. $\exists W : \widetilde{\mathbf{P}} := {}^t(p_1, ; p_{n-1}) \in \mathbb{R}^{n-1}$ の近傍
- 3. $\exists f \colon W \to \mathbb{R} : C^{\infty}$ s. t.

$$\{Q \in V ; F(Q) = 0\}$$

$$= \{ {}^{t}(x_{1}, \dots, x_{n-1}, f(x_{1}, \dots, x_{n-1})) ; {}^{t}(x_{1}, \dots, x_{n-1}) \in W \}.$$

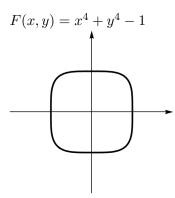
陰関数定理

定理 (陰関数定理;定理 7.1, n = 2 の場合)

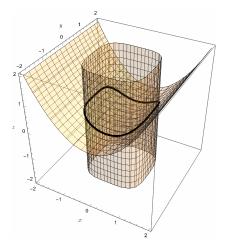
- $F: \mathbb{R}^2 \supset U \ni (x,y) \mapsto F(x,y) \in \mathbb{R}: \ C^{\infty}$
- ► F(p,q) = 0, $F_y(p,q) \neq 0$ ($(p,q) \in U$)

 $\Rightarrow \exists V \subset U : (p,q)$ の近傍; $\exists J : p$ を含む区間; $\exists f \colon J \to \mathbb{R} : C^\infty$ with

$$\{P \in V ; F(Q) = 0\} = \{t(x, f(x)) ; x \in J\}$$



問題 6-2



$${x^4 + y^4 = 1} \cap {2z - x^2 = 0}$$

なめらかな曲線

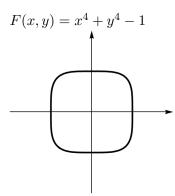
注意

- ト $\mathbb{R}^2 \supset C \neq \emptyset$ が、自己交叉のないなめらかな曲線である ⇔ $\forall P \in C, \exists V \subset \mathbb{R}^2 : P$ の近傍 s.t. $C \cap V$ が、区間 $J \subset \mathbb{R}$ 上で定義された C^∞ -級関数 $f \colon J \to \mathbb{R}$ のグラフ $\{{}^t(x,f(x)) \colon x \in J\}$ と合同.
- ト $\gamma: \mathbb{R} \supset J \to \mathbb{R}^2$ がパラメータ表示された<u>なめらかな曲線</u> ⇔ $\forall t_0 \in J \; ; \; \exists \varepsilon > 0 \; \text{s.t.} \; \gamma(J') \; が自己交叉のないなめらかな曲線 <math>(J' := (t_0 \varepsilon, t_0 + \varepsilon))$

なめらかな曲線

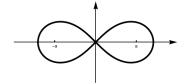
定理

 \mathbb{R}^2 の領域 U で定義された C^∞ -級関数 $F\colon U\to\mathbb{R}$ に対して $C:=F^{-1}(\{0\})=\{\mathrm{P}\in U\,;\,F(\mathrm{P})=0\}\neq\emptyset$ とする.C 上の各点 P で $dF(\mathrm{P}):=\left(\frac{\partial F}{\partial x}(\mathrm{P}),\frac{\partial F}{\partial y}(\mathrm{P})\right)\neq\mathbf{0}$ が 成り立つならば C は自己交叉のないなめらかな曲線である.



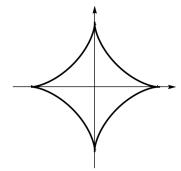
例 7.5

$$F_1(x,y) = (x^2 + y^2)^2 - (x^2 - y^2)$$



例 7.5

 $F_2(x,y) = (1-x^2-y^2)^3 - 27x^2y^2$



陰関数の微分

定理

領域 $U\subset\mathbb{R}^2$ 上の C^∞ -級関数 $F\colon U\to\mathbb{R}$ が点 $P\in U$ において F(P)=0 かつ $F_y(P)\neq 0$ を満たすとき,P の近傍 V において $F^{-1}(\{0\})\cap V$ は C^∞ -級関数のグラフ y=f(x) で表示される.このとき

$$f'(x) = -\frac{F_x}{F_y}, \qquad f''(x) = -\frac{F_{xx}F_y^2 - 2F_{xy}F_xF_y + F_{yy}F_x^2}{F_y^3}$$

が成り立つ. ただし F_x , …はそれらの (x, f(x)) における値を表す.

幾何学概論第一 陰関数定理 2022/11/

例題

問題

なめらかな曲線 $\{x^4 + y^4 = 1\}$ の点 (a,b) における曲率を求めよ.