Advanced Topics in Geometry E (MTH.B501)

Linear Ordinary Differential Equations

Kotaro Yamada

kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2022/geom-e/

Tokyo Institute of Technology

2022/04/19

Linear ordinary differential equations

$$\frac{d}{dt}\boldsymbol{x}(t) = A(t)\boldsymbol{x}(t) + \boldsymbol{b}(t),$$

Global Existence

Linear ordinary differential equations in matrix forms

$$\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0,$$

Preliminaries

Proposition (Prop. 1.8)

Assume two C^{∞} matrix-valued functions X(t) and $\Omega(t)$ satisfy

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Then

$$\det X(t) = (\det X_0) \exp \int_{t_0}^t \operatorname{tr} \Omega(\tau) d\tau.$$

In particular, if $X_0 \in \mathrm{GL}(n,\mathbb{R})$, then $X(t) \in \mathrm{GL}(n,\mathbb{R})$ for all t.

Preliminaries

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Corollary (Cor. 1.9)

If $\operatorname{tr} \Omega(t) = 0$, then $\det X(t)$ is constant. In particular, if $X_0 \in \operatorname{SL}(n,\mathbb{R})$, X is a function valued in $\operatorname{SL}(n,\mathbb{R})$.

Preliminaries

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0.$$

Proposition (Prop. 1.10)

Assume ${}^t\Omega+\Omega=O$.

If $X_0 \in \mathrm{O}(n)$ (resp. $X_0 \in \mathrm{SO}(n)$),

then $X(t) \in O(n)$ (resp. $X(t) \in SO(n)$) for all t.

Linear ordinary differential equations.

Proposition (Prop. 1.12)

Let $\Omega(t)$ be a C^{∞} -function valued in $\mathrm{M}_n(\mathbb{R})$ defined on an interval I. Then for each $t_0 \in I$, there exists the unique matrix-valued C^{∞} -function $X(t) = X_{t_0,\mathrm{id}}(t)$ such that

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = \mathrm{id}.$$

Linear ordinary differential equations.

Corollary (Cor. 1.13)

There exists the unique matrix-valued C^{∞} -function $X_{t_0,X_0}(t)$ defined on I such that

$$\frac{dX(t)}{dt} = X(t)\Omega(t), \quad X(t_0) = X_0 \quad \left(X(t) := X_{t_0, X_0}(t)\right)$$

In particular, $X_{t_0,X_0}(t)$ is of class C^{∞} in X_0 and t.

Non-homogenious case

Proposition (Prop. 1.14)

Let $\Omega(t)$ and B(t) be matrix-valued C^{∞} -functions defined on I. Then for each $t_0 \in I$ and $X_0 \in \mathrm{M}_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function defined on I satisfying

$$\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0.$$

Fundamental Theorem

Theorem (Thm. 1.15)

Let I and U be an interval and a domain in \mathbb{R}^m , respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞} -functions defined on $I \times U$ ($\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)$). Then for each $t_0 \in I$, $\boldsymbol{\alpha} \in U$ and $X_0 \in \mathrm{M}_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function $X(t) = X_{t_0, X_0, \boldsymbol{\alpha}}(t)$ defined on I such that

$$\frac{dX(t)}{dt} = X(t)\Omega(t, \boldsymbol{\alpha}) + B(t, \boldsymbol{\alpha}), \qquad X(t_0) = X_0.$$
 (1)

Moreover,

$$I \times I \times \mathrm{M}_n(\mathbb{R}) \times U \ni (t, t_0, X_0, \boldsymbol{\alpha}) \mapsto X_{t_0, X_0, \boldsymbol{\alpha}}(t) \in \mathrm{M}_n(\mathbb{R})$$

is a C^{∞} -map.

Application to Space Curves

- $ightharpoonup \gamma \colon I o \mathbb{R}^3$: a space curve parametrized by the arclength.
- $ightharpoonup e = \gamma'$
- $ightharpoonup \kappa = |e'|$; we assume $\kappa > 0$ (the curvature)
- $lacksquare n = e'/\kappa$ (the principal normal)
- $lackbox{lack} b = e imes n$ (the binormal)
- lacksquare $au = -m{b}' \cdot m{n}$ (the torsion)

Frenet-Serret

 $ightharpoonup \mathcal{F} := (e, n, b) \colon I \to \mathrm{SO}(3)$: the Frenet Frame

$$\frac{d\mathcal{F}}{ds} = \mathcal{F}\Omega, \qquad \Omega = \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}.$$

The Fundamental Theorem for Space Curves

Theorem (Thm. 1.17)

Let $\kappa(s)$ and $\tau(s)$ be C^{∞} -finctions defined on an interval I satisfying $\kappa(s) > 0$ on I.

Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ , respectively. Moreover, such a curve is unique up to transformation $x \mapsto Ax + b \ (A \in SO(3), b \in \mathbb{R}^3) \ \text{of } \mathbb{R}^3.$