Advanced Topics in Geometry E (MTH.B501)

Linear Ordinary Differential Equations

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2022/geom-e/

Tokyo Institute of Technology

$$
2022 / 04 / 19
$$

Linear ordinary differential equations

$$
\frac{d}{d t} \boldsymbol{x}(t)=A(t) \boldsymbol{x}(t)+\boldsymbol{b}(t)
$$

- Global Existence

Linear ordinary differential equations in matrix forms

$$
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0},
$$

Preliminaries

Proposition (Prop. 1.8)
Assume two C^{∞} matrix-valued functions $X(t)$ and $\Omega(t)$ satisfy

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0}
$$

Then

$$
\operatorname{det} X(t)=\left(\operatorname{det} X_{0}\right) \exp \int_{t_{0}}^{t} \operatorname{tr} \Omega(\tau) d \tau
$$

In particular, if $X_{0} \in \mathrm{GL}(n, \mathbb{R})$, then $X(t) \in \mathrm{GL}(n, \mathbb{R})$ for all t.

Preliminaries

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0}
$$

Corollary (Cor. 1.9)
If $\operatorname{tr} \Omega(t)=0$, then $\operatorname{det} X(t)$ is constant. In particular, if $X_{0} \in \mathrm{SL}(n, \mathbb{R}), X$ is a function valued in $\operatorname{SL}(n, \mathbb{R})$.

Preliminaries

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0}
$$

Proposition (Prop. 1.10)
Assume ${ }^{t} \Omega+\Omega=O$.
If $X_{0} \in \mathrm{O}(n)\left(\right.$ resp. $\left.X_{0} \in \mathrm{SO}(n)\right)$,
then $X(t) \in \mathrm{O}(n)($ resp. $X(t) \in \mathrm{SO}(n))$ for all t.

Linear ordinary differential equations.

Proposition (Prop. 1.12)

Let $\Omega(t)$ be a C^{∞}-function valued in $\mathrm{M}_{n}(\mathbb{R})$ defined on an interval I. Then for each $t_{0} \in I$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, \text { id }}(t)$ such that

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=\mathrm{id}
$$

Linear ordinary differential equations.

Corollary (Cor. 1.13)

There exists the unique matrix-valued C^{∞}-function $X_{t_{0}, X_{0}}(t)$ defined on I such that

$$
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} \quad\left(X(t):=X_{t_{0}, X_{0}}(t)\right)
$$

In particular, $X_{t_{0}, X_{0}}(t)$ is of class C^{∞} in X_{0} and t.

Non-homogenious case

Proposition (Prop. 1.14)

Let $\Omega(t)$ and $B(t)$ be matrix-valued C^{∞}-functions defined on I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function defined on I satisfying

$$
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0}
$$

Fundamental Theorem

Theorem (Thm. 1.15)
Let I and U be an interval and a domain in \mathbb{R}^{m}, respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞}-functions defined on $I \times U\left(\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)$. Then for each $t_{0} \in I, \boldsymbol{\alpha} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t)$ defined on I such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t, \boldsymbol{\alpha})+B(t, \boldsymbol{\alpha}), \quad X\left(t_{0}\right)=X_{0} \tag{1}
\end{equation*}
$$

Moreover,

$$
I \times I \times \mathrm{M}_{n}(\mathbb{R}) \times U \ni\left(t, t_{0}, X_{0}, \boldsymbol{\alpha}\right) \mapsto X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

is a C^{∞}-map.

Application to Space Curves

- $\gamma: I \rightarrow \mathbb{R}^{3}:$ a space curve parametrized by the arclength.
- $\boldsymbol{e}=\gamma^{\prime}$
- $\kappa=\left|\boldsymbol{e}^{\prime}\right|$; we assume $\kappa>0$ (the curvature)
- $\boldsymbol{n}=\boldsymbol{e}^{\prime} / \kappa$ (the principal normal)
- $\boldsymbol{b}=\boldsymbol{e} \times \boldsymbol{n}$ (the binormal)
- $\tau=-\boldsymbol{b}^{\prime} \cdot \boldsymbol{n}$ (the torsion)

Frenet-Serret

- $\mathcal{F}:=(\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}): I \rightarrow \mathrm{SO}(3):$ the Frenet Frame

$$
\frac{d \mathcal{F}}{d s}=\mathcal{F} \Omega, \quad \Omega=\left(\begin{array}{ccc}
0 & -\kappa & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right) .
$$

The Fundamental Theorem for Space Curves

Theorem (Thm. 1.17)
Let $\kappa(s)$ and $\tau(s)$ be C^{∞}-fnctions defined on an interval I satisfying $\kappa(s)>0$ on I.
Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ, respectively. Moreover, such a curve is unique up to transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}+\boldsymbol{b}\left(A \in \mathrm{SO}(3), \boldsymbol{b} \in \mathbb{R}^{3}\right)$ of \mathbb{R}^{3}.

