Advanced Topics in Geometry E (MTH.B501)

The Fundamental Theorem for Surfaces

Kotaro Yamada kotaro@math.titech.ac.jp http://www.math.titech.ac.jp/~kotaro/class/2022/geom-e/

Tokyo Institute of Technology

2022/05/24

The fundamental theorem for surfaces

Given data: six functions defined on $U \subset \mathbb{R}^2$.

$$\widehat{I} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}, \qquad \widehat{II} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix},$$

Assumption:

$$g_{11} > 0,$$
 $g_{22} > 0,$ and $g_{11}g_{22} - g_{12}g_{21} > 0$

Set up:

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{2} g^{kl} (g_{lj,k} + g_{il,j} - g_{jl,k}), \qquad A_{j}^{i} = \sum_{l=1}^{2} g_{jl} h_{il}$$

The statement

Theorem (Theorem 5.1)

Assume U is simply connected, and (g_{ij}) and (h_{ij}) satisfy the Gauss equation and Codazzi equations. Then there exists a regular surface $p: U \to \mathbb{R}^3$ such that

- the first fundamental form of p is $ds^2 = \sum_{i,j} g_{ij} du^i du^j$,
- ► the second fundamental form of p with respect to the unit normal vector field v := (p_{,1} × p_{,2})/|p_{,1} × p_{,2}| coincides with II = ∑_{i,j} h_{ij}duⁱ du^j.

Moreover, such a surface p is unique up to a transformation

$$p \mapsto Rp + a, \qquad R \in SO(3), \ a \in \mathbb{R}^3.$$

Uniqueness

Existence

Exercise 5-1

Problem (Ex. 5-1) Prove

$$\mathcal{G}_{,j} = {}^t\Omega_j \mathcal{G} + \mathcal{G}\Omega_j$$

Exercise 5-2

Problem (Ex. 5-2)

Let $\theta: U \to \mathbb{R}$ be a C^{∞} -function defined on a simply connected domain U of the uv-plane \mathbb{R}^2 . Assuming θ satisfies $\theta_{uv} = \sin \theta$, prove that there exists a surface $p: U \to \mathbb{R}^3$ whose first and second fundamental forms are

$$ds^{2} = du^{2} + 2\cos\theta \, du \, dv + dv^{2}, \qquad II = 2\sin\theta \, du \, dv.$$

Exercise 5-3

Problem (Ex. 5-3)

Let $\sigma: U \to \mathbb{R}$ be a C^{∞} -function defined on a simply connected domain U of the uv-plane \mathbb{R}^2 . Assuming σ satisfies $\Delta \sigma = -\frac{1}{2} \sinh \sigma$, prove that there exists a surface $p: U \to \mathbb{R}^3$ with

$$ds^{2} = e^{2\sigma}(du^{2} + dv^{2}), \qquad II = \frac{1}{2}((e^{2\sigma} + 1)du^{2} + (e^{2\sigma} - 1)dv^{2}).$$