# Advanced Topics in Geometry E (MTH.B501) 

Pseudospherical surfaces

Kotaro Yamada<br>kotaro@math.titech.ac.jp<br>http://www.math.titech.ac.jp/~kotaro/class/2022/geom-e/

Tokyo Institute of Technology

$$
2022 / 05 / 31
$$

## The setting

- $p: U \rightarrow \mathbb{R}^{3}$ : a regular surface
- $d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}$ : the first fundamental form.
- $I I=L d u^{2}+2 M d u d v+N d v^{2}$ : the second fundamental form.
- A pseudospherical surface: $K=\frac{L N-M^{2}}{E G-F^{2}}=-1$.


## Asymptotic directions

$\boldsymbol{\alpha}=\alpha p_{u}+\beta p_{v}$ is an asymptotic direction

$$
\Leftrightarrow \alpha^{2} L+2 \alpha \beta M+\beta^{2} N=0 .
$$

## Asymptotic vector fields

## Lemma

Assume that the Gaussian curvature $K$ is negative at $\left(u_{0}, v_{0}\right)$.
Then there exists a neighborhoold $V$ of $\left(u_{0}, v_{0}\right)$ and smooth functions $\alpha_{i}, \beta_{i}(i=1,2)$ on $V$ such that

$$
\begin{equation*}
\boldsymbol{\alpha}_{i}(u, v):=\alpha_{i}(u, v) p_{u}(u, v)+\beta_{i}(u, v) p_{v}(u, v) \quad(i=1,2) \tag{1}
\end{equation*}
$$

are two linearly independent asymptotic directions at each $(u, v) \in V$.

## Asymptotic Coordinates

## Definition

A parameter $(u, v)$ of the surface $p: U \rightarrow \mathbb{R}^{3}$ is called an asymptotic coordinat esystem or an asymptotic parameter if both the $u$-curves $u \mapsto p(u, v)$ and the $v$-curves $v \mapsto p(u, v)$ are asymptotic curves.

## Lemma

A coordinate system ( $u, v$ ) of a surface is an asymptotic coordinate system if and only if the second fundamental form is written in the form

$$
I I=2 M d u d v
$$

that is, $L=N=0$. In particular, $M \neq 0$ if the Gaussian curvature does not vanish.

## Asymptotic Coordinates

Theorem
Let $p: U \rightarrow \mathbb{R}^{3}$ be a regular surface whose Gaussian curvature at $\left(u_{0}, v_{0}\right)$ is negative. Then there exists a neighborhood $V$ of $\left(u_{0}, v_{0}\right)$ and a coordinate change $V^{\prime} \ni(\xi, \eta) \mapsto(u(\xi, \eta), v(\xi, \eta)) \in V$ for which $(\xi, \eta)$ is an asymptotic coordinate system.

## Asymptotic Chebyshev net

Theorem
Let $p: U \rightarrow \mathbb{R}^{3}$ be a surface with Gaussian curvature -1 . Then for each point $\left(u_{0}, v_{0}\right) \in U$, there exists a neighborhood $V$ and coordinate change $(\xi, \eta) \mapsto(u, v)$ on $V$ such that the first and second fundamental forms are in the form

$$
d s^{2}=d \xi^{2}+2 \cos \theta d \xi d \eta+d \eta^{2}, \quad I I=2 \sin \theta d \xi d \eta
$$

where $\theta=\theta(\xi, \eta)$ is a smooth function in $(\xi, \eta)$ valued in $(0, \pi)$.

## The sine Gordon equation

$$
\theta_{u v}=\sin \theta
$$

## To find a simple solution...

## Exercise 6-1

## Problem (Ex. 6-1)

Find an explicit solution of (6.5) for $e=1$, with initial condition $\varphi(0)=0, \dot{\varphi}(0)=2$.

## Exercise 6-2

Problem (Ex. 6-2)
For a constant $e \in(0,1)$, the solution $\varphi$ of (6.5) with (6.6) is a periodic function. Find the period of such a solution.

