Advanced Topics in Geometry E (MTH.B501)

Pseudospherical surfaces

Kotaro Yamada kotaro@math.titech.ac.jp http://www.math.titech.ac.jp/~kotaro/class/2022/geom-e/

Tokyo Institute of Technology

2022/05/31

The setting

- $\blacktriangleright \ p \colon U \to \mathbb{R}^3 \colon \text{a regular surface}$
- ▶ $ds^2 = E du^2 + 2F du dv + G dv^2$: the first fundamental form.
- $II = L du^2 + 2M du dv + N dv^2$: the second fundamental form.
- A pseudospherical surface: $K = \frac{LN-M^2}{EG-F^2} = -1$.

Asymptotic directions

 $\boldsymbol{lpha} = lpha p_u + eta p_v$ is an asymptotic direction

 $\Leftrightarrow \alpha^2 L + 2\alpha\beta M + \beta^2 N = 0.$

Asymptotic vector fields

Lemma

Assume that the Gaussian curvature K is negative at (u_0, v_0) . Then there exists a neighborhoold V of (u_0, v_0) and smooth functions α_i , β_i (i = 1, 2) on V such that

$$\alpha_i(u,v) := \alpha_i(u,v)p_u(u,v) + \beta_i(u,v)p_v(u,v) \qquad (i = 1,2) \quad (1)$$

are two linearly independent asymptotic directions at each $(u,v) \in V$.

Asymptotic Coordinates

Definition

A parameter (u, v) of the surface $p: U \to \mathbb{R}^3$ is called an asymptotic coordinat esystem or an asymptotic parameter if both the *u*-curves $u \mapsto p(u, v)$ and the *v*-curves $v \mapsto p(u, v)$ are asymptotic curves.

Lemma

A coordinate system (u, v) of a surface is an asymptotic coordinate system if and only if the second fundamental form is written in the form

$$II = 2M \, du \, dv,$$

that is, L = N = 0. In particular, $M \neq 0$ if the Gaussian curvature does not vanish.

Asymptotic Coordinates

Theorem

Let $p: U \to \mathbb{R}^3$ be a regular surface whose Gaussian curvature at (u_0, v_0) is negative. Then there exists a neighborhood V of (u_0, v_0) and a coordinate change $V' \ni (\xi, \eta) \mapsto (u(\xi, \eta), v(\xi, \eta)) \in V$ for which (ξ, η) is an asymptotic coordinate system.

Asymptotic Chebyshev net

Theorem

Let $p: U \to \mathbb{R}^3$ be a surface with Gaussian curvature -1. Then for each point $(u_0, v_0) \in U$, there exists a neighborhood V and coordinate change $(\xi, \eta) \mapsto (u, v)$ on V such that the first and second fundamental forms are in the form

$$ds^{2} = d\xi^{2} + 2\cos\theta \,d\xi \,d\eta + d\eta^{2}, \quad II = 2\sin\theta \,d\xi \,d\eta,$$

where $\theta = \theta(\xi, \eta)$ is a smooth function in (ξ, η) valued in $(0, \pi)$.

The sine Gordon equation

 $\theta_{uv} = \sin \theta$

To find a simple solution...

Exercise 6-1

Problem (Ex. 6-1)

Find an explicit solution of (6.5) for e = 1, with initial condition $\varphi(0) = 0$, $\dot{\varphi}(0) = 2$.

Exercise 6-2

Problem (Ex. 6-2)

For a constant $e \in (0, 1)$, the solution φ of (6.5) with (6.6) is a periodic function. Find the period of such a solution.