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1 Linear Ordinary Differential Equations

The fundamental theorem for ordinary differential equations. Consider a function

(1.1) f : I × U 3 (t,x) 7−→ f(t,x) ∈ Rm

of class C1, where I ⊂ R is an interval and U ⊂ Rm is a domain in the Euclidean space Rm. For
any fixed t0 ∈ I and x0 ∈ U , the condition

(1.2) d

dt
x(t) = f

(
t,x(t)

)
, x(t0) = x0

of an Rm-valued function t 7→ x(t) is called the initial value problem of ordinary differential
equation for unknown function x(t). A function x : I → U satisfying (1.2) is called a solution of
the initial value problem.
Fact 1.1 (The existence theorem for ODE’s). Let f : I × U → Rm be a C1-function as in (1.1).
Then, for any x0 ∈ U and t0 ∈ I, there exists a positive number ε and a C1-function x : I ∩ (t0 −
ε, t0 + ε) → U satisfying (1.2).

Consider two solutions xj : Jj → U (j = 1, 2) of (1.2) defined on subintervals Jj ⊂ I containing
t0. Then the function x2 is said to be an extension of x1 if J1 ⊂ J2 and x2|J1

= x1. A solution x
of (1.2) is said to be maximal if there are no non-trivial extension of it.
Fact 1.2 (The uniqueness for ODE’s). The maximal solution of (1.2) is unique.
Fact 1.3 (Smoothness of the solutoins). If f : I × U → Rm is of class Cr (r = 1, . . . ,∞), the
solution of (1.2) is of class Cr+1. Here, ∞+ 1 = ∞, as a convention.

Let V ⊂ Rk be another domain of Rk and consider a C∞-function

(1.3) h : I × U × V 3 (t,x;α) 7→ h(t,x;α) ∈ Rm.

For fixed t0 ∈ I, we denote by x(t;x0,α) the (unique, maximal) solution of (1.2) for f(t,x) =
h(t,x;α). Then
Fact 1.4. The map (t,x0;α) 7→ x(t;x0,α) is of class C∞.
Example 1.5. (1) Let m = 1, I = R, U = R and f(t, x) = λx, where λ is a constant. Then

x(t) = x0 exp(λt) defined on R is the maximal solution to
d

dt
x(t) = f(t, x(t)) = λx(t), x(0) = x0.

(2) Let m = 2, I = R, U = R2 and f(t; (x, y)) = (y,−ω2x), where ω is a constant. Then(
x(t)
y(t)

)
=

(
x0 cosωt+

y0

ω sinωt
−x0ω sinωt+ y0 cosωt

)
is the unique solution of

d

dt

(
x(t)
y(t)

)
=

(
y(t)

−ω2x(t)

)
,

(
x(0)
y(0)

)
=

(
x0

y0

)
,

defined on R. This differential equation can be considered a single equation
d2

dt2
x(t) = −ω2x(t), x(0) = x0,

dx

dt
(0) = y0

of order 2.

(3) Let m = 1, I = R, U = R and f(t, x) = 1 + x2. Then x(t) = tan t defined on (−π
2 ,

π
2 ) is the

unique maximal solution of the initial value problem
dx

dt
= 1 + x2, x(0) = 0.
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Linear Ordinary Differential Equations. The ordinary differential equation (1.2) is said to
be linear if the function (1.1) is a linear function in x, that is, a linear differential equation is in a
form

d

dt
x(t) = A(t)x(t) + b(t),

where A(t) and b(t) are m×m-matrix-valued and Rm-valued functions in t.
For the sake of later use, we consider, in this lecture, the special form of linear differential

equation for matrix-valued unknown functions as follows: Let Mn(R) be the set of n× n-matrices
with real components, and take functions

Ω : I −→ Mn(R), andB : I −→ Mn(R),

where I ⊂ R is an interval. Identifying Mn(R) with Rn2 , we assume Ω and B are continuous
functions (with respect to the topology of Rn2

= Mn(R)). Then we can consider the linear
ordinary differential equation for matrix-valued unknown X(t) as

(1.4) dX(t)

dt
= X(t)Ω(t) +B(t), X(t0) = X0,

where X0 is given constant matrix.
Then, the fundamental theorem of linear ordinary equation states that the maximal solution

of (1.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued
functions.

Preliminaries: Matrix Norms. Denote by Mn(R) the set of n × n-matrices with real com-
ponents, which can be identified the vector space Rn2 . In particular, the Euclidean norm of Rn2

induces a norm

(1.5) |X|E =

√
tr(tXX) =

√√√√ n∑
i,j=1

x2
ij

on Mn(R). On the other hand, we let

(1.6) |X|M := sup

{
|Xv|
|v|

; v ∈ Rn \ {0}
}
,

where | · | denotes the Euclidean norm of Rn.

Lemma 1.6. (1) The map X 7→ |X|M is a norm of Mn(R).

(2) For X, Y ∈ Mn(R), it holds that |XY |M 5 |X|M |Y |M.

(3) Let λ = λ(X) be the maximum eigenvalue of semi-positive definite symmetric matrix tXX.
Then |X|M =

√
λ holds.

(4) (1/
√
n)|X|E 5 |X|M 5 |X|E.

(5) The map | · |M : Mn(R) → R is continuous with respect to the Euclidean norm.

Proof. Since |Xv|/|v| is invariant under scalar multiplications to v, we have |X|M = sup{|Xv| ; v ∈
Sn−1}, where Sn−1 is the unit sphere in Rn. Since Sn−1 3 x 7→ |Ax| ∈ R is a continuous function
defined on a compact space, it takes the maximum. Thus, the right-hand side of (1.6) is well-
defined. It is easy to verify that | · |M satisfies the axiom of the norm1.

1|X|M > 0 whenever X 6= O, |αX|M = |α| |X|M, and the triangle inequality.
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Since A := tXX is positive semi-definite, the eigenvalues λj (j = 1, . . . , n) are non-negative
real numbers. In particular, there exists an orthonormal basis [aj ] of Rn satisfying Aaj = λjaj

(j = 1, . . . , n). Let λ be the maximum eigenvalue of A, and write v = v1a1 + · · ·+ vnan. Then it
holds that

〈Xv, Xv〉 = λ1v
2
1 + · · ·+ λnv

2
n 5 λ 〈v,v〉 ,

where 〈 , 〉 is the Euclidean inner product of Rn. The equality of this inequality holds if and
only if v is the λ-eigenvector, proving (3). Noticing the norm (3.2) is invariant under conjugations
X 7→ tPXP (P ∈ O(n)), we obtain |X|E =

√
λ2
1 + · · ·+ λ2

n by diagonalizing tXX by an orthogonal
matrix P . Then we obtain (4). Hence two norms | · |E and | · |M induce the same topology as Mn(R).
In particular, we have (5).

Preliminaries: Matrix-valued Functions.
Lemma 1.7. Let X and Y be C∞-maps defined on a domain U ⊂ Rm into Mn(R). Then

(1) ∂

∂uj
(XY ) =

∂X

∂uj
Y +X

∂Y

∂uj
,

(2) ∂

∂uj
detX = tr

(
X̃

∂X

∂uj

)
, and

(3) ∂

∂uj
X−1 = −X−1 ∂X

∂uj
X−1,

where X̃ is the cofactor matrix of X, and we assume in (3) that X is a regular matrix.

Proof. The formula (1) holds because the definition of matrix multiplication and the Leibnitz rule,
Denoting ′ = ∂/∂uj ,

O = (id)′ = (X−1X)′ = (X−1)X ′ + (X−1)′X

implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as X = (x1, . . . ,xn). Since the determinant is

multi-linear form for n-tuple of column vectors, it holds that

(detX)′ = det(x′
1,x2, . . . ,xn) + det(x1,x

′
2, . . . ,xn) + · · ·+ det(x1,x2, . . . ,x

′
n).

Then by cofactor expansion of the right-hand side, we obtain (2).

Proposition 1.8. Assume two C∞ matrix-valued functions X(t) and Ω(t) satisfy

(1.7) dX(t)

dt
= X(t)Ω(t), X(t0) = X0.

Then

(1.8) detX(t) = (detX0) exp

∫ t

t0

trΩ(τ) dτ

holds. In particular, if X0 ∈ GL(n,R),2 then X(t) ∈ GL(n,R) for all t.

Proof. By (2) of Lemma 1.7, we have

d

dt
detX(t) = tr

(
X̃(t)

dX(t)

dt

)
= tr

(
X̃(t)X(t)Ω(t)

)
= tr

(
detX(t)Ω(t)

)
= detX(t) trΩ(t).

Here, we used the relation X̃X = XX̃ = (detX) id3. Hence d
dt

(
ρ(t)−1 detX(t)

)
= 0, where ρ(t) is

the right-hand side of (1.8).
2GL(n,R) = {A ∈ Mn(R) ; detA 6= 0}: the general linear group.
3In this lecture, id denotes the identity matrix.
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Corollary 1.9. If Ω(t) in (1.7) satisfies trΩ(t) = 0, detX(t) is constant. In particular, if
X0 ∈ SL(n,R), X is a function valued in SL(n,R) 4.

Proposition 1.10. Assume Ω(t) in (1.7) is skew-symmetric for all t, that is, tΩ+Ω is identically
O. If X0 ∈ O(n) (resp. X0 ∈ SO(n))5, then X(t) ∈ O(n) (resp. X(t) ∈ SO(n)) for all t.

Proof. By (1) in Lemma 1.7,

d

dt
(XtX) =

dX

dt
tX +X

t(
dX

dt

)
= XΩtX +XtΩtX = X(Ω + tΩ)tX = O.

Hence XtX is constant, that is, if X0 ∈ O(n),

X(t)
t
X(t) = X(t0)

t
X(t0) = X0

tX0 = id .

If X0 ∈ O(n), this proves the first case of the proposition. Since detA = ±1 when A ∈ O(n), the
second case follows by continuity of detX(t).

Preliminaries: Norms of Matrix-Valued functions. Let I = [a, b] be a closed interval, and
denote by C0(I,Mn(R)) the set of continuous functions X : I → Mn(R). For any positive number
k, we define

(1.9) ||X||I,k := sup
{
e−kt|X(t)|M ; t ∈ I

}
for X ∈ C0(I,Mn(R)). When k = 0, || · ||I,0 is the uniform norm for continuous functions, which
is complete. Similarly, one can prove the following in the same way:

Lemma 1.11. The norm || · ||I,k on C0(I,Mn(R)) is complete.

Linear Ordinary Differential Equations. We prove the fundamental theorem for linear or-
dinary differential equations.

Proposition 1.12. Let Ω(t) be a C∞-function valued in Mn(R) defined on an interval I. Then
for each t0 ∈ I, there exists the unique matrix-valued C∞-function X(t) = Xt0,id(t) such that

(1.10) dX(t)

dt
= X(t)Ω(t), X(t0) = id .

Proof. Uniqueness: Assume X(t) and Y (t) satisfy (1.10). Then

Y (t)−X(t) =

∫ t

t0

(
Y ′(τ)−X ′(τ)

)
dτ =

∫ t

t0

(
Y (τ)−X(τ)

)
Ω(τ) dτ

(
′ =

d

dt

)
holds. Hence for an arbitrary closed interval J ⊂ I,

|Y (t)−X(t)|M 5

∣∣∣∣∫ t

t0

∣∣(Y (τ)−X(τ)
)
Ω(τ)

∣∣
M
dτ

∣∣∣∣ 5 ∣∣∣∣∫ t

t0

|Y (τ)−X(τ)|M |Ω(τ)|M dτ

∣∣∣∣
=

∣∣∣∣∫ t

t0

e−kτ |Y (τ)−X(τ)|M ekτ |Ω(τ)|M dτ

∣∣∣∣ 5 ||Y −X||J,k sup
J

|Ω|M
∣∣∣∣∫ t

t0

ekτ dτ

∣∣∣∣
= ||Y −X||J,k

supJ |Ω|M
|k|

ekt
∣∣∣1− e−k(t−t0)

∣∣∣ 5 ||Y −X||J,k sup
J

|Ω|M
ekt

|k|
4SL(n,R) = {A ∈ Mn(R) ; detA = 1}; the special lienar group.
5O(n) = {A ∈ Mn(R) ; tAA = AtA = id}: the orthogonal group; SO(n) = {A ∈ O(n) ; detA = 1}: the special

orthogonal group.
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holds for t ∈ J . Thus, for an appropriate choice of k ∈ R, it holds that

||Y −X||J,k 5
1

2
||Y −X||J,k,

that is, ||Y −X||J,k = 0, proving Y (t) = X(t) for t ∈ J . Since J is arbitrary, Y = X holds on I.
Existence: Let J := [t0, a] ⊂ I be a closed interval, and define a sequence {Xj} of matrix-valued
functions defined on I satisfying X0(t) = id and

(1.11) Xj+1(t) = id+

∫ t

t0

Xj(τ)Ω(τ) dτ (j = 0, 1, 2, . . . ).

Let k := 2 supJ |Ω|M. Then

|Xj+1(t)−Xj(t)|M 5
∫ t

t0

|Xj(τ)−Xj−1(τ)|M|Ω(τ)|M dτ

5
ek(t−t0)

|k|
sup
J

|Ω|M||Xj −Xj−1||J,k

for an appropriate choice of k ∈ R, and hence ||Xj+1 −Xj ||J,k 5 1
2 ||Xj −Xj−1||J,k, that is, {Xj}

is a Cauchy sequence with respect to || · ||J,k. Thus, by completeness (Lemma 1.11), it converges
to some X ∈ C0(J,Mn(R)). By (1.11), the limit X satisfies

X(t0) = id, X(t) = id+

∫ t

t0

X(τ)Ω(τ) dτ.

Applying the fundamental theorem of calculus, we can see that X satisfies X ′(t) = X(t)Ω(t)
(′ = d/dt). Since J can be taken arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C∞. Since X ′(t) = X(t)Ω(t), the derivative X ′ of
X is continuous. Hence X is of class C1, and so is X(t)Ω(t). Thus we have that X ′(t) is of class
C1, and then X is of class C2. Iterating this argument, we can prove that X(t) is of class Cr for
arbitrary r.

Corollary 1.13. Let Ω(t) be a matrix-valued C∞-function defined on an interval I. Then for
each t0 ∈ I and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function Xt0,X0

(t) defined
on I such that

(1.12) dX(t)

dt
= X(t)Ω(t), X(t0) = X0

(
X(t) := Xt0,X0

(t)
)

In particular, Xt0,X0
(t) is of class C∞ in X0 and t.

Proof. We rewrite X(t) in Proposition 1.12 as Y (t) = Xt0,id(t). Then the function

(1.13) X(t) := X0Y (t) = X0Xt0,id(t),

is desired one. Conversely, assume X(t) satisfies the conclusion. Noticing Y (t) is a regular matrix
for all t because of Proposition 1.8,

W (t) := X(t)Y (t)−1

satisfies
dW

dt
=

dX

dt
Y −1 −XY −1 dY

dt
Y −1 = XΩY −1 −XY −1Y ΩY −1 = O.

Hence
W (t) = W (t0) = X(t0)Y (t0)

−1 = X0.

Hence the uniqueness is obtained. The final part is obvious by the expression (1.13).
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Proposition 1.14. Let Ω(t) and B(t) be matrix-valued C∞-functions defined on I. Then for each
t0 ∈ I and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function defined on I satisfying

(1.14) dX(t)

dt
= X(t)Ω(t) +B(t), X(t0) = X0.

Proof. Rewrite X in Proposition 1.12 as Y := Xt0,id. Then

(1.15) X(t) =

(
X0 +

∫ t

t0

B(τ)Y −1(τ) dτ

)
Y (t)

satisfies (1.14). Conversely, if X satisfies (1.14), W := XY −1 satisfies

X ′ = W ′Y +WY ′ = W ′Y +WYΩ, XΩ +B = WYΩ +B,

and then we have W ′ = BY −1. Since W (t0) = X0,

W = X0 +

∫ t

t0

B(τ)Y −1(τ) dτ.

Thus we obtain (1.15).

Theorem 1.15. Let I and U be an interval and a domain in Rm, respectively, and let Ω(t,α) and
B(t,α) be matrix-valued C∞-functions defined on I×U (α = (α1, . . . , αm)). Then for each t0 ∈ I,
α ∈ U and X0 ∈ Mn(R), there exists the unique matrix-valued C∞-function X(t) = Xt0,X0,α(t)
defined on I such that

(1.16) dX(t)

dt
= X(t)Ω(t,α) +B(t,α), X(t0) = X0.

Moreover,
I × I ×Mn(R)× U 3 (t, t0, X0,α) 7→ Xt0,X0,α(t) ∈ Mn(R)

is a C∞-map.

Proof. Let Ω̃(t, α̃) := Ω(t + t0,α) and B̃(t, α̃) = B(t + t0,α), and let X̃(t) := X(t + t0). Then
(1.16) is equivalent to

(1.17) dX̃(t)

dt
= X̃(t)Ω̃(t, α̃) + B̃(t, α̃), X̃(0) = X0,

where α̃ := (t0, α1, . . . , αm). There exists the unique solution X̃(t) = X̃id,X0,α̃(t) of (1.17) for
each α̃ because of Proposition 1.14. So it is sufficient to show differentiability with respect to the
parameter α̃. We set Z = Z(t) the unique solution of

(1.18) dZ

dt
= ZΩ̃ + X̃

∂Ω̃

∂αj
+

∂B̃

∂αj
, Z(0) = O.

Then it holds that Z = ∂X̃/∂αj (Problem 1-2). In particular, by the proof of Proposition 1.14, it
holds that

Z=
∂X̃

∂αj
=

(∫ t

0

(
X̃(τ)

∂Ω̃(τ, α̃)

∂αj
+

∂B̃(τ, α̃)

∂αj

)
Y −1(τ)dτ

)
Y (t).

Here, Y (t) is the unique matrix-valued C∞-function satisfying Y ′(t) = Y (t)Ω̃(t, α̃), and Y (0) = id.
Hence X̃ is a C∞-function in (t, α̃).
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Fundamental Theorem for Space Curves. As an application, we prove the fundamental
theorem for space curves. A C∞-map γ : I → R3 defined on an interval I ⊂ R into R3 is said to
be a regular curve if γ̇ 6= 0 holds on I. For a regular curve γ(t), there exists a parameter change
t = t(s) such that γ̃(s) := γ(t(s)) satisfies |γ̃′(s)| = 1. Such a parameter s is called the arc-length
parameter.

Let γ(s) be a regular curve in R3 parametrized by the arc-length satisfying γ′′(s) 6= 0 for all s.
Then

e(s) := γ′(s), n(s) :=
γ′′(s)

|γ′′(s)|
, b(s) := e(s)× n(s)

forms a positively oriented orthonormal basis {e,n, b} of R3 for each s. Regarding each vector as
column vector, we have the matrix-valued function

(1.19) F(s) := (e(s),n(s), b(s)) ∈ SO(3).

in s, which is called the Frenet frame associated to the curve γ. Under the situation above, we set

κ(s) := |γ′′(s)| > 0, τ(s) := −
〈
b′(s),n(s)

〉
,

which are called the curvature and torsion, respectively, of γ. Using these quantities, the Frenet
frame satisfies

(1.20) dF
ds

= FΩ, Ω =

0 −κ 0
κ 0 −τ
0 τ 0

 .

Proposition 1.16. The curvature and the torsion are invariant under the transformation x 7→
Ax + b of R3 (A ∈ SO(3), b ∈ R3). Conversely, two curves γ1(s), γ2(s) parametrized by arc-
length parameter have common curvature and torsion, there exist A ∈ SO(3) and b ∈ R3 such that
γ2 = Aγ1 + b.

Proof. Let κ, τ and F1 be the curvature, torsion and the Frenet frame of γ1, respectively. Then
the Frenet frame of γ2 = Aγ1+b (A ∈ SO(3), b ∈ R3) is F2 = AF1. Hence both F1 and F2 satisfy
(1.20), and then γ1 and γ2 have common curvature and torsion.

Conversely, assume γ1 and γ2 have common curvature and torsion. Then the frenet frame F1,
F2 both satisfy (1.20). Let F be the unique solution of (1.20) with F(t0) = id. Then by the
proof of Corollary 1.13, we have Fj(t) = Fj(t0)F(t) (j = 1, 2). In particular, since Fj ∈ SO(3),
F2(t) = AF1(t) (A := F2(t0)F1(t0)

−1 ∈ SO(3)). Comparing the first column of these, γ′
2(s) =

Aγ′
1(t) holds. Integrating this, the conclusion follows.

Theorem 1.17 (The fundamental theorem for space curves).
Let κ(s) and τ(s) be C∞-fnctions defined on an interval I satisfying κ(s) > 0 on I. Then there
exists a space curve γ(s) parametrized by arc-length whose curvature and torsion are κ and τ ,
respectively. Moreover, such a curve is unique up to transformation x 7→ Ax + b (A ∈ SO(3),
b ∈ R3) of R3.

Proof. We have already shown the uniqueness in Proposition 1.16. We shall prove the existence:
Let Ω(s) be as in (1.20), and F(s) the solution of (1.20) with F(s0) = id. Since Ω is skew-
symmetric, F(s) ∈ SO(3) by Proposition 1.10. Denoting the column vectors of F by e, n, b, and
let

γ(s) :=

∫ s

s0

e(σ) dσ.

Then F is the Frenet frame of γ, and κ, and τ are the curvature and torsion of γ, respectively.
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Exercises

1-1 Find the maximal solution of the initial value problem

dx

dt
= λx(a− x), x(0) = b,

where λ and a are positive constants, and b is a real number.

1-2 Verify that Z in (1.18) coincides with ∂X̃/∂αj .

1-3 Find an explicit expression of a space curve γ(s) parametrized by the arc-length s, whose
curvature and torsion are a/(1+s2) and b/(1+s2), respectively, where a and b are constants.


