1 Linear Ordinary Differential Equations

The fundamental theorem for ordinary differential equations. Consider a function

$$
\begin{equation*}
\boldsymbol{f}: I \times U \ni(t, \boldsymbol{x}) \longmapsto \boldsymbol{f}(t, \boldsymbol{x}) \in \mathbb{R}^{m} \tag{1.1}
\end{equation*}
$$

of class C^{1}, where $I \subset \mathbb{R}$ is an interval and $U \subset \mathbb{R}^{m}$ is a domain in the Euclidean space \mathbb{R}^{m}. For any fixed $t_{0} \in I$ and $\boldsymbol{x}_{0} \in U$, the condition

$$
\begin{equation*}
\frac{d}{d t} \boldsymbol{x}(t)=\boldsymbol{f}(t, \boldsymbol{x}(t)), \quad \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}_{0} \tag{1.2}
\end{equation*}
$$

of an \mathbb{R}^{m}-valued function $t \mapsto \boldsymbol{x}(t)$ is called the initial value problem of ordinary differential equation for unknown function $\boldsymbol{x}(t)$. A function $\boldsymbol{x}: I \rightarrow U$ satisfying (1.2) is called a solution of the initial value problem.
Fact 1.1 (The existence theorem for ODE's). Let $\boldsymbol{f}: I \times U \rightarrow \mathbb{R}^{m}$ be a C^{1}-function as in (1.1). Then, for any $\boldsymbol{x}_{0} \in U$ and $t_{0} \in I$, there exists a positive number ε and a C^{1}-function $\boldsymbol{x}: I \cap\left(t_{0}-\right.$ $\left.\varepsilon, t_{0}+\varepsilon\right) \rightarrow U$ satisfying (1.2).

Consider two solutions $\boldsymbol{x}_{j}: J_{j} \rightarrow U(j=1,2)$ of (1.2) defined on subintervals $J_{j} \subset I$ containing t_{0}. Then the function \boldsymbol{x}_{2} is said to be an extension of \boldsymbol{x}_{1} if $J_{1} \subset J_{2}$ and $\left.\boldsymbol{x}_{2}\right|_{J_{1}}=\boldsymbol{x}_{1}$. A solution \boldsymbol{x} of (1.2) is said to be maximal if there are no non-trivial extension of it.
Fact 1.2 (The uniqueness for ODE's). The maximal solution of (1.2) is unique.
Fact 1.3 (Smoothness of the solutoins). If $\boldsymbol{f}: I \times U \rightarrow \mathbb{R}^{m}$ is of class $C^{r}(r=1, \ldots, \infty)$, the solution of (1.2) is of class C^{r+1}. Here, $\infty+1=\infty$, as a convention.

Let $V \subset \mathbb{R}^{k}$ be another domain of \mathbb{R}^{k} and consider a C^{∞}-function

$$
\begin{equation*}
\boldsymbol{h}: I \times U \times V \ni(t, \boldsymbol{x} ; \boldsymbol{\alpha}) \mapsto \boldsymbol{h}(t, \boldsymbol{x} ; \boldsymbol{\alpha}) \in \mathbb{R}^{m} \tag{1.3}
\end{equation*}
$$

For fixed $t_{0} \in I$, we denote by $\boldsymbol{x}\left(t ; \boldsymbol{x}_{0}, \boldsymbol{\alpha}\right)$ the (unique, maximal) solution of (1.2) for $\boldsymbol{f}(t, \boldsymbol{x})=$ $\boldsymbol{h}(t, \boldsymbol{x} ; \boldsymbol{\alpha})$. Then
Fact 1.4. The map $\left(t, \boldsymbol{x}_{0} ; \boldsymbol{\alpha}\right) \mapsto \boldsymbol{x}\left(t ; \boldsymbol{x}_{0}, \boldsymbol{\alpha}\right)$ is of class C^{∞}.
Example 1.5. (1) Let $m=1, I=\mathbb{R}, U=\mathbb{R}$ and $f(t, x)=\lambda x$, where λ is a constant. Then $x(t)=x_{0} \exp (\lambda t)$ defined on \mathbb{R} is the maximal solution to

$$
\frac{d}{d t} x(t)=f(t, x(t))=\lambda x(t), \quad x(0)=x_{0}
$$

(2) Let $m=2, I=\mathbb{R}, U=\mathbb{R}^{2}$ and $\boldsymbol{f}(t ;(x, y))=\left(y,-\omega^{2} x\right)$, where ω is a constant. Then

$$
\binom{x(t)}{y(t)}=\binom{x_{0} \cos \omega t+\frac{y_{0}}{\omega} \sin \omega t}{-x_{0} \omega \sin \omega t+y_{0} \cos \omega t}
$$

is the unique solution of

$$
\frac{d}{d t}\binom{x(t)}{y(t)}=\binom{y(t)}{-\omega^{2} x(t)}, \quad\binom{x(0)}{y(0)}=\binom{x_{0}}{y_{0}}
$$

defined on \mathbb{R}. This differential equation can be considered a single equation

$$
\frac{d^{2}}{d t^{2}} x(t)=-\omega^{2} x(t), \quad x(0)=x_{0}, \quad \frac{d x}{d t}(0)=y_{0}
$$

of order 2 .
(3) Let $m=1, I=\mathbb{R}, U=\mathbb{R}$ and $f(t, x)=1+x^{2}$. Then $x(t)=\tan t$ defined on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is the unique maximal solution of the initial value problem

$$
\frac{d x}{d t}=1+x^{2}, \quad x(0)=0
$$

19. April, 2022. Revised: 10. May, 2022

Linear Ordinary Differential Equations. The ordinary differential equation (1.2) is said to be linear if the function (1.1) is a linear function in \boldsymbol{x}, that is, a linear differential equation is in a form

$$
\frac{d}{d t} \boldsymbol{x}(t)=A(t) \boldsymbol{x}(t)+\boldsymbol{b}(t)
$$

where $A(t)$ and $\boldsymbol{b}(t)$ are $m \times m$-matrix-valued and \mathbb{R}^{m}-valued functions in t.
For the sake of later use, we consider, in this lecture, the special form of linear differential equation for matrix-valued unknown functions as follows: Let $\mathrm{M}_{n}(\mathbb{R})$ be the set of $n \times n$-matrices with real components, and take functions

$$
\Omega: I \longrightarrow \mathrm{M}_{n}(\mathbb{R}), \quad \text { and } B: I \longrightarrow \mathrm{M}_{n}(\mathbb{R}),
$$

where $I \subset \mathbb{R}$ is an interval. Identifying $\mathrm{M}_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$, we assume Ω and B are continuous functions (with respect to the topology of $\mathbb{R}^{n^{2}}=\mathrm{M}_{n}(\mathbb{R})$). Then we can consider the linear ordinary differential equation for matrix-valued unknown $X(t)$ as

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0} \tag{1.4}
\end{equation*}
$$

where X_{0} is given constant matrix.
Then, the fundamental theorem of linear ordinary equation states that the maximal solution of (1.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued functions.

Preliminaries: Matrix Norms. Denote by $\mathrm{M}_{n}(\mathbb{R})$ the set of $n \times n$-matrices with real components, which can be identified the vector space $\mathbb{R}^{n^{2}}$. In particular, the Euclidean norm of $\mathbb{R}^{n^{2}}$ induces a norm

$$
\begin{equation*}
|X|_{\mathrm{E}}=\sqrt{\operatorname{tr}\left({ }^{t} X X\right)}=\sqrt{\sum_{i, j=1}^{n} x_{i j}^{2}} \tag{1.5}
\end{equation*}
$$

on $\mathrm{M}_{n}(\mathbb{R})$. On the other hand, we let

$$
\begin{equation*}
|X|_{\mathrm{M}}:=\sup \left\{\frac{|X \boldsymbol{v}|}{|\boldsymbol{v}|} ; \boldsymbol{v} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}\right\} \tag{1.6}
\end{equation*}
$$

where $|\cdot|$ denotes the Euclidean norm of \mathbb{R}^{n}.
Lemma 1.6. (1) The map $X \mapsto|X|_{\mathrm{M}}$ is a norm of $\mathrm{M}_{n}(\mathbb{R})$.
(2) For $X, Y \in \mathrm{M}_{n}(\mathbb{R})$, it holds that $|X Y|_{\mathrm{M}} \leqq|X|_{\mathrm{M}}|Y|_{\mathrm{M}}$.
(3) Let $\lambda=\lambda(X)$ be the maximum eigenvalue of semi-positive definite symmetric matrix ${ }^{t} X X$. Then $|X|_{\mathrm{M}}=\sqrt{\lambda}$ holds.
(4) $(1 / \sqrt{n})|X|_{\mathrm{E}} \leqq|X|_{\mathrm{M}} \leqq|X|_{\mathrm{E}}$.
(5) The map $|\cdot|_{\mathrm{M}}: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is continuous with respect to the Euclidean norm.

Proof. Since $|X \boldsymbol{v}| /|\boldsymbol{v}|$ is invariant under scalar multiplications to \boldsymbol{v}, we have $|X|_{\mathrm{M}}=\sup \{|X \boldsymbol{v}| ; \boldsymbol{v} \in$ $\left.S^{n-1}\right\}$, where S^{n-1} is the unit sphere in \mathbb{R}^{n}. Since $S^{n-1} \ni \boldsymbol{x} \mapsto|A \boldsymbol{x}| \in \mathbb{R}$ is a continuous function defined on a compact space, it takes the maximum. Thus, the right-hand side of (1.6) is welldefined. It is easy to verify that $|\cdot|_{\mathrm{M}}$ satisfies the axiom of the norm ${ }^{1}$.

[^0]Since $A:={ }^{t} X X$ is positive semi-definite, the eigenvalues $\lambda_{j}(j=1, \ldots, n)$ are non-negative real numbers. In particular, there exists an orthonormal basis [\boldsymbol{a}_{j}] of \mathbb{R}^{n} satisfying $A \boldsymbol{a}_{j}=\lambda_{j} \boldsymbol{a}_{j}$ $(j=1, \ldots, n)$. Let λ be the maximum eigenvalue of A, and write $\boldsymbol{v}=v_{1} \boldsymbol{a}_{1}+\cdots+v_{n} \boldsymbol{a}_{n}$. Then it holds that

$$
\langle X \boldsymbol{v}, X \boldsymbol{v}\rangle=\lambda_{1} v_{1}^{2}+\cdots+\lambda_{n} v_{n}^{2} \leqq \lambda\langle\boldsymbol{v}, \boldsymbol{v}\rangle,
$$

where \langle,$\rangle is the Euclidean inner product of \mathbb{R}^{n}$. The equality of this inequality holds if and only if \boldsymbol{v} is the λ-eigenvector, proving (3). Noticing the norm (3.2) is invariant under conjugations $X \mapsto{ }^{t} P X P(P \in \mathrm{O}(n))$, we obtain $|X|_{\mathrm{E}}=\sqrt{\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}}$ by diagonalizing ${ }^{t} X X$ by an orthogonal matrix P. Then we obtain (4). Hence two norms $|\cdot|_{\mathrm{E}}$ and $|\cdot|_{\mathrm{M}}$ induce the same topology as $\mathrm{M}_{n}(\mathbb{R})$. In particular, we have (5).

Preliminaries: Matrix-valued Functions.

Lemma 1.7. Let X and Y be C^{∞}-maps defined on a domain $U \subset \mathbb{R}^{m}$ into $\mathrm{M}_{n}(\mathbb{R})$. Then
(1) $\frac{\partial}{\partial u_{j}}(X Y)=\frac{\partial X}{\partial u_{j}} Y+X \frac{\partial Y}{\partial u_{j}}$,
(2) $\frac{\partial}{\partial u_{j}} \operatorname{det} X=\operatorname{tr}\left(\widetilde{X} \frac{\partial X}{\partial u_{j}}\right)$, and
(3) $\frac{\partial}{\partial u_{j}} X^{-1}=-X^{-1} \frac{\partial X}{\partial u_{j}} X^{-1}$,
where \widetilde{X} is the cofactor matrix of X, and we assume in (3) that X is a regular matrix.
Proof. The formula (1) holds because the definition of matrix multiplication and the Leibnitz rule, Denoting ${ }^{\prime}=\partial / \partial u_{j}$,

$$
O=(\mathrm{id})^{\prime}=\left(X^{-1} X\right)^{\prime}=\left(X^{-1}\right) X^{\prime}+\left(X^{-1}\right)^{\prime} X
$$

implies (3), where id is the identity matrix.
Decompose the matrix X into column vectors as $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$. Since the determinant is multi-linear form for n-tuple of column vectors, it holds that

$$
(\operatorname{det} X)^{\prime}=\operatorname{det}\left(\boldsymbol{x}_{1}^{\prime}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right)+\operatorname{det}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}^{\prime}, \ldots, \boldsymbol{x}_{n}\right)+\cdots+\operatorname{det}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}^{\prime}\right)
$$

Then by cofactor expansion of the right-hand side, we obtain (2).
Proposition 1.8. Assume two C^{∞} matrix-valued functions $X(t)$ and $\Omega(t)$ satisfy

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{det} X(t)=\left(\operatorname{det} X_{0}\right) \exp \int_{t_{0}}^{t} \operatorname{tr} \Omega(\tau) d \tau \tag{1.8}
\end{equation*}
$$

holds. In particular, if $X_{0} \in \mathrm{GL}(n, \mathbb{R}),{ }^{2}$ then $X(t) \in \mathrm{GL}(n, \mathbb{R})$ for all t.
Proof. By (2) of Lemma 1.7, we have

$$
\begin{aligned}
\frac{d}{d t} \operatorname{det} X(t) & =\operatorname{tr}\left(\widetilde{X}(t) \frac{d X(t)}{d t}\right)=\operatorname{tr}(\widetilde{X}(t) X(t) \Omega(t)) \\
& =\operatorname{tr}(\operatorname{det} X(t) \Omega(t))=\operatorname{det} X(t) \operatorname{tr} \Omega(t)
\end{aligned}
$$

Here, we used the relation $\widetilde{X} X=X \widetilde{X}=(\operatorname{det} X) \operatorname{id}^{3}$. Hence $\frac{d}{d t}\left(\rho(t)^{-1} \operatorname{det} X(t)\right)=0$, where $\rho(t)$ is the right-hand side of (1.8).

[^1]Corollary 1.9. If $\Omega(t)$ in (1.7) satisfies $\operatorname{tr} \Omega(t)=0$, $\operatorname{det} X(t)$ is constant. In particular, if $X_{0} \in \operatorname{SL}(n, \mathbb{R}), X$ is a function valued in $\operatorname{SL}(n, \mathbb{R})^{4}$.
Proposition 1.10. Assume $\Omega(t)$ in (1.7) is skew-symmetric for all t, that is, ${ }^{t} \Omega+\Omega$ is identically O. If $X_{0} \in \mathrm{O}(n)$ (resp. $\left.X_{0} \in \mathrm{SO}(n)\right)^{5}$, then $X(t) \in \mathrm{O}(n)$ (resp. $X(t) \in \mathrm{SO}(n)$) for all t.

Proof. By (1) in Lemma 1.7,

$$
\begin{aligned}
\frac{d}{d t}\left(X^{t} X\right) & =\frac{d X}{d t}^{t} X+X^{t}\left(\frac{d X}{d t}\right) \\
& =X \Omega^{t} X+X^{t} \Omega^{t} X=X\left(\Omega+{ }^{t} \Omega\right)^{t} X=O
\end{aligned}
$$

Hence $X^{t} X$ is constant, that is, if $X_{0} \in \mathrm{O}(n)$,

$$
X(t)^{t} X(t)=X\left(t_{0}\right)^{t} X\left(t_{0}\right)=X_{0}^{t} X_{0}=\mathrm{id}
$$

If $X_{0} \in \mathrm{O}(n)$, this proves the first case of the proposition. Since $\operatorname{det} A= \pm 1$ when $A \in \mathrm{O}(n)$, the second case follows by continuity of $\operatorname{det} X(t)$.

Preliminaries: Norms of Matrix-Valued functions. Let $I=[a, b]$ be a closed interval, and denote by $C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$ the set of continuous functions $X: I \rightarrow \mathrm{M}_{n}(\mathbb{R})$. For any positive number k, we define

$$
\begin{equation*}
\|X\|_{I, k}:=\sup \left\{e^{-k t}|X(t)|_{\mathrm{M}} ; t \in I\right\} \tag{1.9}
\end{equation*}
$$

for $X \in C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$. When $k=0,\|\cdot\|_{I, 0}$ is the uniform norm for continuous functions, which is complete. Similarly, one can prove the following in the same way:

Lemma 1.11. The norm $\|\cdot\|_{I, k}$ on $C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$ is complete.
Linear Ordinary Differential Equations. We prove the fundamental theorem for linear ordinary differential equations.

Proposition 1.12. Let $\Omega(t)$ be a C^{∞}-function valued in $\mathrm{M}_{n}(\mathbb{R})$ defined on an interval I. Then for each $t_{0} \in I$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, \mathrm{id}}(t)$ such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=\mathrm{id} \tag{1.10}
\end{equation*}
$$

Proof. Uniqueness: Assume $X(t)$ and $Y(t)$ satisfy (1.10). Then

$$
Y(t)-X(t)=\int_{t_{0}}^{t}\left(Y^{\prime}(\tau)-X^{\prime}(\tau)\right) d \tau=\int_{t_{0}}^{t}(Y(\tau)-X(\tau)) \Omega(\tau) d \tau \quad\left({ }^{\prime}=\frac{d}{d t}\right)
$$

holds. Hence for an arbitrary closed interval $J \subset I$,

[^2]holds for $t \in J$. Thus, for an appropriate choice of $k \in \mathbb{R}$, it holds that
$$
\|Y-X\|_{J, k} \leqq \frac{1}{2}\|Y-X\|_{J, k},
$$
that is, $\|Y-X\|_{J, k}=0$, proving $Y(t)=X(t)$ for $t \in J$. Since J is arbitrary, $Y=X$ holds on I. Existence: Let $J:=\left[t_{0}, a\right] \subset I$ be a closed interval, and define a sequence $\left\{X_{j}\right\}$ of matrix-valued functions defined on I satisfying $X_{0}(t)=\mathrm{id}$ and
\[

$$
\begin{equation*}
X_{j+1}(t)=\mathrm{id}+\int_{t_{0}}^{t} X_{j}(\tau) \Omega(\tau) d \tau \quad(j=0,1,2, \ldots) . \tag{1.11}
\end{equation*}
$$

\]

Let $k:=2 \sup _{J}|\Omega|_{\mathrm{M}}$. Then

$$
\begin{aligned}
& \left|X_{j+1}(t)-X_{j}(t)\right|_{\mathrm{M}} \leqq \int_{t_{0}}^{t}\left|X_{j}(\tau)-X_{j-1}(\tau)\right|_{\mathrm{M}}|\Omega(\tau)|_{\mathrm{M}} d \tau \\
& \quad \leqq \frac{e^{k\left(t-t_{0}\right)}}{|k|} \sup _{J}|\Omega|_{\mathrm{M}}| | X_{j}-X_{j-1}| |_{J, k}
\end{aligned}
$$

for an appropriate choice of $k \in \mathbb{R}$, and hence $\left\|X_{j+1}-X_{j}\right\|_{J, k} \leqq \frac{1}{2}\left\|X_{j}-X_{j-1}\right\|_{J, k}$, that is, $\left\{X_{j}\right\}$ is a Cauchy sequence with respect to $\|\cdot\|_{J, k}$. Thus, by completeness (Lemma 1.11), it converges to some $X \in C^{0}\left(J, \mathrm{M}_{n}(\mathbb{R})\right)$. By (1.11), the limit X satisfies

$$
X\left(t_{0}\right)=\mathrm{id}, \quad X(t)=\mathrm{id}+\int_{t_{0}}^{t} X(\tau) \Omega(\tau) d \tau .
$$

Applying the fundamental theorem of calculus, we can see that X satisfies $X^{\prime}(t)=X(t) \Omega(t)$ $\left(^{\prime}=d / d t\right)$. Since J can be taken arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C^{∞}. Since $X^{\prime}(t)=X(t) \Omega(t)$, the derivative X^{\prime} of X is continuous. Hence X is of class C^{1}, and so is $X(t) \Omega(t)$. Thus we have that $X^{\prime}(t)$ is of class C^{1}, and then X is of class C^{2}. Iterating this argument, we can prove that $X(t)$ is of class C^{r} for arbitrary r.

Corollary 1.13. Let $\Omega(t)$ be a matrix-valued C^{∞}-function defined on an interval I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function $X_{t_{0}, X_{0}}(t)$ defined on I such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} \quad\left(X(t):=X_{t_{0}, X_{0}}(t)\right) \tag{1.12}
\end{equation*}
$$

In particular, $X_{t_{0}, X_{0}}(t)$ is of class C^{∞} in X_{0} and t.
Proof. We rewrite $X(t)$ in Proposition 1.12 as $Y(t)=X_{t_{0}, \mathrm{id}}(t)$. Then the function

$$
\begin{equation*}
X(t):=X_{0} Y(t)=X_{0} X_{t_{0}, \mathrm{id}}(t), \tag{1.13}
\end{equation*}
$$

is desired one. Conversely, assume $X(t)$ satisfies the conclusion. Noticing $Y(t)$ is a regular matrix for all t because of Proposition 1.8,

$$
W(t):=X(t) Y(t)^{-1}
$$

satisfies

$$
\frac{d W}{d t}=\frac{d X}{d t} Y^{-1}-X Y^{-1} \frac{d Y}{d t} Y^{-1}=X \Omega Y^{-1}-X Y^{-1} Y \Omega Y^{-1}=O
$$

Hence

$$
W(t)=W\left(t_{0}\right)=X\left(t_{0}\right) Y\left(t_{0}\right)^{-1}=X_{0} .
$$

Hence the uniqueness is obtained. The final part is obvious by the expression (1.13).

Proposition 1.14. Let $\Omega(t)$ and $B(t)$ be matrix-valued C^{∞}-functions defined on I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function defined on I satisfying

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0} \tag{1.14}
\end{equation*}
$$

Proof. Rewrite X in Proposition 1.12 as $Y:=X_{t_{0}, \text { id }}$. Then

$$
\begin{equation*}
X(t)=\left(X_{0}+\int_{t_{0}}^{t} B(\tau) Y^{-1}(\tau) d \tau\right) Y(t) \tag{1.15}
\end{equation*}
$$

satisfies (1.14). Conversely, if X satisfies (1.14), $W:=X Y^{-1}$ satisfies

$$
X^{\prime}=W^{\prime} Y+W Y^{\prime}=W^{\prime} Y+W Y \Omega, \quad X \Omega+B=W Y \Omega+B
$$

and then we have $W^{\prime}=B Y^{-1}$. Since $W\left(t_{0}\right)=X_{0}$,

$$
W=X_{0}+\int_{t_{0}}^{t} B(\tau) Y^{-1}(\tau) d \tau
$$

Thus we obtain (1.15).
Theorem 1.15. Let I and U be an interval and a domain in \mathbb{R}^{m}, respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞}-functions defined on $I \times U\left(\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)$. Then for each $t_{0} \in I$, $\boldsymbol{\alpha} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t)$ defined on I such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t, \boldsymbol{\alpha})+B(t, \boldsymbol{\alpha}), \quad X\left(t_{0}\right)=X_{0} \tag{1.16}
\end{equation*}
$$

Moreover,

$$
I \times I \times \mathrm{M}_{n}(\mathbb{R}) \times U \ni\left(t, t_{0}, X_{0}, \boldsymbol{\alpha}\right) \mapsto X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

is a C^{∞}-map.
Proof. Let $\widetilde{\Omega}(t, \tilde{\boldsymbol{\alpha}}):=\Omega\left(t+t_{0}, \boldsymbol{\alpha}\right)$ and $\widetilde{B}(t, \tilde{\boldsymbol{\alpha}})=B\left(t+t_{0}, \boldsymbol{\alpha}\right)$, and let $\widetilde{X}(t):=X\left(t+t_{0}\right)$. Then (1.16) is equivalent to

$$
\begin{equation*}
\frac{d \widetilde{X}(t)}{d t}=\widetilde{X}(t) \widetilde{\Omega}(t, \tilde{\boldsymbol{\alpha}})+\widetilde{B}(t, \tilde{\boldsymbol{\alpha}}), \quad \widetilde{X}(0)=X_{0} \tag{1.17}
\end{equation*}
$$

where $\tilde{\boldsymbol{\alpha}}:=\left(t_{0}, \alpha_{1}, \ldots, \alpha_{m}\right)$. There exists the unique solution $\tilde{X}(t)=\widetilde{X}_{\mathrm{id}, X_{0}, \tilde{\boldsymbol{\alpha}}}(t)$ of (1.17) for each $\tilde{\boldsymbol{\alpha}}$ because of Proposition 1.14. So it is sufficient to show differentiability with respect to the parameter $\tilde{\boldsymbol{\alpha}}$. We set $Z=Z(t)$ the unique solution of

$$
\begin{equation*}
\frac{d Z}{d t}=Z \widetilde{\Omega}+\widetilde{X} \frac{\partial \widetilde{\Omega}}{\partial \alpha_{j}}+\frac{\partial \widetilde{B}}{\partial \alpha_{j}}, \quad Z(0)=O \tag{1.18}
\end{equation*}
$$

Then it holds that $Z=\partial \widetilde{X} / \partial \alpha_{j}$ (Problem 1-2). In particular, by the proof of Proposition 1.14, it holds that

$$
Z=\frac{\partial \widetilde{X}}{\partial \alpha_{j}}=\left(\int_{0}^{t}\left(\widetilde{X}(\tau) \frac{\partial \widetilde{\Omega}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_{j}}+\frac{\partial \widetilde{B}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_{j}}\right) Y^{-1}(\tau) d \tau\right) Y(t)
$$

Here, $Y(t)$ is the unique matrix-valued C^{∞}-function satisfying $Y^{\prime}(t)=Y(t) \widetilde{\Omega}(t, \widetilde{\boldsymbol{\alpha}})$, and $Y(0)=$ id. Hence \tilde{X} is a C^{∞}-function in $(t, \tilde{\boldsymbol{\alpha}})$.

Fundamental Theorem for Space Curves. As an application, we prove the fundamental theorem for space curves. A C^{∞}-map $\gamma: I \rightarrow \mathbb{R}^{3}$ defined on an interval $I \subset \mathbb{R}$ into \mathbb{R}^{3} is said to be a regular curve if $\dot{\gamma} \neq \mathbf{0}$ holds on I. For a regular curve $\gamma(t)$, there exists a parameter change $t=t(s)$ such that $\tilde{\gamma}(s):=\gamma(t(s))$ satisfies $\left|\tilde{\gamma}^{\prime}(s)\right|=1$. Such a parameter s is called the arc-length parameter.

Let $\gamma(s)$ be a regular curve in \mathbb{R}^{3} parametrized by the arc-length satisfying $\gamma^{\prime \prime}(s) \neq \mathbf{0}$ for all s. Then

$$
\boldsymbol{e}(s):=\gamma^{\prime}(s), \quad \boldsymbol{n}(s):=\frac{\gamma^{\prime \prime}(s)}{\left|\gamma^{\prime \prime}(s)\right|}, \quad \boldsymbol{b}(s):=\boldsymbol{e}(s) \times \boldsymbol{n}(s)
$$

forms a positively oriented orthonormal basis $\{\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}\}$ of \mathbb{R}^{3} for each s. Regarding each vector as column vector, we have the matrix-valued function

$$
\begin{equation*}
\mathcal{F}(s):=(\boldsymbol{e}(s), \boldsymbol{n}(s), \boldsymbol{b}(s)) \in \mathrm{SO}(3) \tag{1.19}
\end{equation*}
$$

in s, which is called the Frenet frame associated to the curve γ. Under the situation above, we set

$$
\kappa(s):=\left|\gamma^{\prime \prime}(s)\right|>0, \quad \tau(s):=-\left\langle\boldsymbol{b}^{\prime}(s), \boldsymbol{n}(s)\right\rangle
$$

which are called the curvature and torsion, respectively, of γ. Using these quantities, the Frenet frame satisfies

$$
\frac{d \mathcal{F}}{d s}=\mathcal{F} \Omega, \quad \Omega=\left(\begin{array}{ccc}
0 & -\kappa & 0 \tag{1.20}\\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right)
$$

Proposition 1.16. The curvature and the torsion are invariant under the transformation $\boldsymbol{x} \mapsto$ $A \boldsymbol{x}+\boldsymbol{b}$ of $\mathbb{R}^{3}\left(A \in \mathrm{SO}(3), \boldsymbol{b} \in \mathbb{R}^{3}\right)$. Conversely, two curves $\gamma_{1}(s)$, $\gamma_{2}(s)$ parametrized by arclength parameter have common curvature and torsion, there exist $A \in \mathrm{SO}(3)$ and $\boldsymbol{b} \in \mathbb{R}^{3}$ such that $\gamma_{2}=A \gamma_{1}+\boldsymbol{b}$.

Proof. Let κ, τ and \mathcal{F}_{1} be the curvature, torsion and the Frenet frame of γ_{1}, respectively. Then the Frenet frame of $\gamma_{2}=A \gamma_{1}+\boldsymbol{b}\left(A \in \mathrm{SO}(3), \boldsymbol{b} \in \mathbb{R}^{3}\right)$ is $\mathcal{F}_{2}=A \mathcal{F}_{1}$. Hence both \mathcal{F}_{1} and \mathcal{F}_{2} satisfy (1.20), and then γ_{1} and γ_{2} have common curvature and torsion.

Conversely, assume γ_{1} and γ_{2} have common curvature and torsion. Then the frenet frame \mathcal{F}_{1}, \mathcal{F}_{2} both satisfy (1.20). Let \mathcal{F} be the unique solution of (1.20) with $\mathcal{F}\left(t_{0}\right)=$ id. Then by the proof of Corollary 1.13, we have $\mathcal{F}_{j}(t)=\mathcal{F}_{j}\left(t_{0}\right) \mathcal{F}(t)(j=1,2)$. In particular, since $\mathcal{F}_{j} \in \operatorname{SO}(3)$, $\mathcal{F}_{2}(t)=A \mathcal{F}_{1}(t)\left(A:=\mathcal{F}_{2}\left(t_{0}\right) \mathcal{F}_{1}\left(t_{0}\right)^{-1} \in \mathrm{SO}(3)\right)$. Comparing the first column of these, $\gamma_{2}^{\prime}(s)=$ $A \gamma_{1}^{\prime}(t)$ holds. Integrating this, the conclusion follows.

Theorem 1.17 (The fundamental theorem for space curves).
Let $\kappa(s)$ and $\tau(s)$ be C^{∞}-fnctions defined on an interval I satisfying $\kappa(s)>0$ on I. Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ, respectively. Moreover, such a curve is unique up to transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}+\boldsymbol{b}(A \in \mathrm{SO}(3)$, $\boldsymbol{b} \in \mathbb{R}^{3}$) of \mathbb{R}^{3}.

Proof. We have already shown the uniqueness in Proposition 1.16. We shall prove the existence: Let $\Omega(s)$ be as in (1.20), and $\mathcal{F}(s)$ the solution of (1.20) with $\mathcal{F}\left(s_{0}\right)=$ id. Since Ω is skewsymmetric, $\mathcal{F}(s) \in \mathrm{SO}(3)$ by Proposition 1.10. Denoting the column vectors of \mathcal{F} by $\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}$, and let

$$
\gamma(s):=\int_{s_{0}}^{s} \boldsymbol{e}(\sigma) d \sigma
$$

Then \mathcal{F} is the Frenet frame of γ, and κ, and τ are the curvature and torsion of γ, respectively.

Exercises

1-1 Find the maximal solution of the initial value problem

$$
\frac{d x}{d t}=\lambda x(a-x), \quad x(0)=b
$$

where λ and a are positive constants, and b is a real number.
1-2 Verify that Z in (1.18) coincides with $\partial \widetilde{X} / \partial \alpha_{j}$.
1-3 Find an explicit expression of a space curve $\gamma(s)$ parametrized by the arc-length s, whose curvature and torsion are $a /\left(1+s^{2}\right)$ and $b /\left(1+s^{2}\right)$, respectively, where a and b are constants.

[^0]: ${ }^{1}|X|_{\mathrm{M}}>0$ whenever $X \neq O,|\alpha X|_{\mathrm{M}}=|\alpha||X|_{\mathrm{M}}$, and the triangle inequality.

[^1]: ${ }^{2} \mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ; \operatorname{det} A \neq 0\right\}$: the general linear group.
 ${ }^{3}$ In this lecture, id denotes the identity matrix.

[^2]: ${ }^{4} \mathrm{SL}(n, \mathbb{R})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ; \operatorname{det} A=1\right\} ;$ the special lienar group.
 ${ }^{5} \mathrm{O}(n)=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ;{ }^{t} A A=A^{t} A=\mathrm{id}\right\}$: the orthogonal group; $\mathrm{SO}(n)=\{A \in \mathrm{O}(n) ; \operatorname{det} A=1\}$: the special orthogonal group.

