1 Linear Ordinary Differential Equations

The fundamental theorem for ordinary differential equations. Consider a function

(1.1)
$$\boldsymbol{f} \colon I \times U \ni (t, \boldsymbol{x}) \longmapsto \boldsymbol{f}(t, \boldsymbol{x}) \in \mathbb{R}^n$$

of class C^1 , where $I \subset \mathbb{R}$ is an interval and $U \subset \mathbb{R}^m$ is a domain in the Euclidean space \mathbb{R}^m . For any fixed $t_0 \in I$ and $\mathbf{x}_0 \in U$, the condition

(1.2)
$$\frac{d}{dt}\boldsymbol{x}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t)), \qquad \boldsymbol{x}(t_0) = \boldsymbol{x}_0$$

of an \mathbb{R}^m -valued function $t \mapsto \mathbf{x}(t)$ is called the *initial value problem of ordinary differential* equation for unknown function $\mathbf{x}(t)$. A function $\mathbf{x}: I \to U$ satisfying (1.2) is called a *solution* of the initial value problem.

Fact 1.1 (The existence theorem for ODE's). Let $f: I \times U \to \mathbb{R}^m$ be a C^1 -function as in (1.1). Then, for any $\mathbf{x}_0 \in U$ and $t_0 \in I$, there exists a positive number ε and a C^1 -function $\mathbf{x}: I \cap (t_0 - \varepsilon, t_0 + \varepsilon) \to U$ satisfying (1.2).

Consider two solutions $x_j: J_j \to U$ (j = 1, 2) of (1.2) defined on subintervals $J_j \subset I$ containing t_0 . Then the function x_2 is said to be an *extension* of x_1 if $J_1 \subset J_2$ and $x_2|_{J_1} = x_1$. A solution x of (1.2) is said to be *maximal* if there are no non-trivial extension of it.

Fact 1.2 (The uniqueness for ODE's). The maximal solution of (1.2) is unique.

Fact 1.3 (Smoothness of the solutions). If $f: I \times U \to \mathbb{R}^m$ is of class C^r $(r = 1, ..., \infty)$, the solution of (1.2) is of class C^{r+1} . Here, $\infty + 1 = \infty$, as a convention.

Let $V \subset \mathbb{R}^k$ be another domain of \mathbb{R}^k and consider a C^{∞} -function

(1.3)
$$\boldsymbol{h} \colon I \times U \times V \ni (t, \boldsymbol{x}; \boldsymbol{\alpha}) \mapsto \boldsymbol{h}(t, \boldsymbol{x}; \boldsymbol{\alpha}) \in \mathbb{R}^m$$

For fixed $t_0 \in I$, we denote by $\boldsymbol{x}(t; \boldsymbol{x}_0, \boldsymbol{\alpha})$ the (unique, maximal) solution of (1.2) for $\boldsymbol{f}(t, \boldsymbol{x}) = \boldsymbol{h}(t, \boldsymbol{x}; \boldsymbol{\alpha})$. Then

Fact 1.4. The map $(t, \mathbf{x}_0; \boldsymbol{\alpha}) \mapsto \mathbf{x}(t; \mathbf{x}_0, \boldsymbol{\alpha})$ is of class C^{∞} .

Example 1.5. (1) Let m = 1, $I = \mathbb{R}$, $U = \mathbb{R}$ and $f(t, x) = \lambda x$, where λ is a constant. Then $x(t) = x_0 \exp(\lambda t)$ defined on \mathbb{R} is the maximal solution to

$$\frac{d}{dt}x(t) = f(t, x(t)) = \lambda x(t), \qquad x(0) = x_0.$$

(2) Let m = 2, $I = \mathbb{R}$, $U = \mathbb{R}^2$ and $f(t; (x, y)) = (y, -\omega^2 x)$, where ω is a constant. Then

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_0 \cos \omega t + \frac{y_0}{\omega} \sin \omega t \\ -x_0 \omega \sin \omega t + y_0 \cos \omega t \end{pmatrix}$$

is the unique solution of

$$\frac{d}{dt} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} y(t) \\ -\omega^2 x(t) \end{pmatrix}, \qquad \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix},$$

defined on \mathbb{R} . This differential equation can be considered a single equation

$$\frac{d^2}{dt^2}x(t) = -\omega^2 x(t), \quad x(0) = x_0, \quad \frac{dx}{dt}(0) = y_0$$

of order 2.

(3) Let m = 1, $I = \mathbb{R}$, $U = \mathbb{R}$ and $f(t, x) = 1 + x^2$. Then $x(t) = \tan t$ defined on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is the unique maximal solution of the initial value problem

$$\frac{dx}{dt} = 1 + x^2, \qquad x(0) = 0.$$

^{19.} April, 2022. Revised: 10. May, 2022

Linear Ordinary Differential Equations. The ordinary differential equation (1.2) is said to be *linear* if the function (1.1) is a linear function in \boldsymbol{x} , that is, a linear differential equation is in a form

$$\frac{d}{dt}\boldsymbol{x}(t) = A(t)\boldsymbol{x}(t) + \boldsymbol{b}(t),$$

where A(t) and b(t) are $m \times m$ -matrix-valued and \mathbb{R}^m -valued functions in t.

For the sake of later use, we consider, in this lecture, the special form of linear differential equation for matrix-valued unknown functions as follows: Let $M_n(\mathbb{R})$ be the set of $n \times n$ -matrices with real components, and take functions

$$\Omega\colon I\longrightarrow \mathrm{M}_n(\mathbb{R}), \quad \mathrm{and}B\colon I\longrightarrow \mathrm{M}_n(\mathbb{R}),$$

where $I \subset \mathbb{R}$ is an interval. Identifying $M_n(\mathbb{R})$ with \mathbb{R}^{n^2} , we assume Ω and B are continuous functions (with respect to the topology of $\mathbb{R}^{n^2} = M_n(\mathbb{R})$). Then we can consider the linear ordinary differential equation for matrix-valued unknown X(t) as

(1.4)
$$\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0$$

where X_0 is given constant matrix.

Then, the fundamental theorem of *linear* ordinary equation states that the maximal solution of (1.4) is defined on whole I. To prove this, we prepare some materials related to matrix-valued functions.

Preliminaries: Matrix Norms. Denote by $M_n(\mathbb{R})$ the set of $n \times n$ -matrices with real components, which can be identified the vector space \mathbb{R}^{n^2} . In particular, the Euclidean norm of \mathbb{R}^{n^2} induces a norm

(1.5)
$$|X|_{\rm E} = \sqrt{\operatorname{tr}({}^t X X)} = \sqrt{\sum_{i,j=1}^n x_{ij}^2}$$

on $M_n(\mathbb{R})$. On the other hand, we let

(1.6)
$$|X|_{\mathrm{M}} := \sup\left\{\frac{|X\boldsymbol{v}|}{|\boldsymbol{v}|} ; \, \boldsymbol{v} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}\right\},$$

where $|\cdot|$ denotes the Euclidean norm of \mathbb{R}^n .

Lemma 1.6. (1) The map $X \mapsto |X|_{M}$ is a norm of $M_{n}(\mathbb{R})$.

- (2) For X, $Y \in M_n(\mathbb{R})$, it holds that $|XY|_M \leq |X|_M |Y|_M$.
- (3) Let $\lambda = \lambda(X)$ be the maximum eigenvalue of semi-positive definite symmetric matrix ^tXX. Then $|X|_{M} = \sqrt{\lambda}$ holds.
- (4) $(1/\sqrt{n})|X|_{\rm E} \leq |X|_{\rm M} \leq |X|_{\rm E}.$
- (5) The map $|\cdot|_{\mathbf{M}} \colon \mathbf{M}_n(\mathbb{R}) \to \mathbb{R}$ is continuous with respect to the Euclidean norm.

Proof. Since $|X\boldsymbol{v}|/|\boldsymbol{v}|$ is invariant under scalar multiplications to \boldsymbol{v} , we have $|X|_{\mathrm{M}} = \sup\{|X\boldsymbol{v}|; \boldsymbol{v} \in S^{n-1}\}$, where S^{n-1} is the unit sphere in \mathbb{R}^n . Since $S^{n-1} \ni \boldsymbol{x} \mapsto |A\boldsymbol{x}| \in \mathbb{R}$ is a continuous function defined on a compact space, it takes the maximum. Thus, the right-hand side of (1.6) is well-defined. It is easy to verify that $|\cdot|_{\mathrm{M}}$ satisfies the axiom of the norm¹.

 $[|]X|_{M} > 0$ whenever $X \neq O$, $|\alpha X|_{M} = |\alpha| |X|_{M}$, and the triangle inequality.

Since $A := {}^{t}XX$ is positive semi-definite, the eigenvalues λ_j (j = 1, ..., n) are non-negative real numbers. In particular, there exists an orthonormal basis $[a_j]$ of \mathbb{R}^n satisfying $Aa_j = \lambda_j a_j$ (j = 1, ..., n). Let λ be the maximum eigenvalue of A, and write $v = v_1a_1 + \cdots + v_na_n$. Then it holds that

$$\langle X \boldsymbol{v}, X \boldsymbol{v} \rangle = \lambda_1 v_1^2 + \dots + \lambda_n v_n^2 \leq \lambda \langle \boldsymbol{v}, \boldsymbol{v} \rangle,$$

where \langle , \rangle is the Euclidean inner product of \mathbb{R}^n . The equality of this inequality holds if and only if \boldsymbol{v} is the λ -eigenvector, proving (3). Noticing the norm (3.2) is invariant under conjugations $X \mapsto {}^t P X P \ (P \in \mathcal{O}(n))$, we obtain $|X|_{\mathcal{E}} = \sqrt{\lambda_1^2 + \cdots + \lambda_n^2}$ by diagonalizing ${}^t X X$ by an orthogonal matrix P. Then we obtain (4). Hence two norms $|\cdot|_{\mathcal{E}}$ and $|\cdot|_{\mathcal{M}}$ induce the same topology as $\mathcal{M}_n(\mathbb{R})$. In particular, we have (5).

Preliminaries: Matrix-valued Functions.

Lemma 1.7. Let X and Y be C^{∞} -maps defined on a domain $U \subset \mathbb{R}^m$ into $M_n(\mathbb{R})$. Then

(1)
$$\frac{\partial}{\partial u_j}(XY) = \frac{\partial X}{\partial u_j}Y + X\frac{\partial Y}{\partial u_j},$$

(2) $\frac{\partial}{\partial u_j} \det X = \operatorname{tr}\left(\tilde{X}\frac{\partial X}{\partial u_j}\right), and$
(3) $\frac{\partial}{\partial u_i}X^{-1} = -X^{-1}\frac{\partial X}{\partial u_i}X^{-1},$

where \widetilde{X} is the cofactor matrix of X, and we assume in (3) that X is a regular matrix.

Proof. The formula (1) holds because the definition of matrix multiplication and the Leibnitz rule, Denoting $' = \partial/\partial u_j$,

$$O = (\mathrm{id})' = (X^{-1}X)' = (X^{-1})X' + (X^{-1})'X$$

implies (3), where id is the identity matrix.

Decompose the matrix X into column vectors as $X = (x_1, \ldots, x_n)$. Since the determinant is multi-linear form for *n*-tuple of column vectors, it holds that

$$(\det X)' = \det(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n) + \det(\boldsymbol{x}_1, \boldsymbol{x}_2', \dots, \boldsymbol{x}_n) + \dots + \det(\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n').$$

Then by cofactor expansion of the right-hand side, we obtain (2).

Proposition 1.8. Assume two C^{∞} matrix-valued functions X(t) and $\Omega(t)$ satisfy

(1.7)
$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = X_0$$

Then

(1.8)
$$\det X(t) = (\det X_0) \exp \int_{t_0}^t \operatorname{tr} \Omega(\tau) \, d\tau$$

holds. In particular, if $X_0 \in \operatorname{GL}(n, \mathbb{R})$,² then $X(t) \in \operatorname{GL}(n, \mathbb{R})$ for all t.

Proof. By (2) of Lemma 1.7, we have

$$\frac{d}{dt} \det X(t) = \operatorname{tr}\left(\widetilde{X}(t)\frac{dX(t)}{dt}\right) = \operatorname{tr}\left(\widetilde{X}(t)X(t)\Omega(t)\right)$$
$$= \operatorname{tr}\left(\det X(t)\Omega(t)\right) = \det X(t)\operatorname{tr}\Omega(t).$$

Here, we used the relation $\widetilde{X}X = X\widetilde{X} = (\det X) \operatorname{id}^3$. Hence $\frac{d}{dt}(\rho(t)^{-1} \det X(t)) = 0$, where $\rho(t)$ is the right-hand side of (1.8).

²GL $(n, \mathbb{R}) = \{A \in M_n(\mathbb{R}); \det A \neq 0\}$: the general linear group.

³In this lecture, id denotes the identity matrix.

Corollary 1.9. If $\Omega(t)$ in (1.7) satisfies tr $\Omega(t) = 0$, det X(t) is constant. In particular, if $X_0 \in SL(n, \mathbb{R})$, X is a function valued in $SL(n, \mathbb{R})^{-4}$.

Proposition 1.10. Assume $\Omega(t)$ in (1.7) is skew-symmetric for all t, that is, ${}^{t}\Omega + \Omega$ is identically O. If $X_0 \in O(n)$ (resp. $X_0 \in SO(n)$)⁵, then $X(t) \in O(n)$ (resp. $X(t) \in SO(n)$) for all t.

Proof. By (1) in Lemma 1.7,

$$\frac{d}{dt}(X^{t}X) = \frac{dX}{dt}^{t}X + X^{t}\left(\frac{dX}{dt}\right)$$
$$= X\Omega^{t}X + X^{t}\Omega^{t}X = X(\Omega + {}^{t}\Omega)^{t}X = O.$$

Hence $X^t X$ is constant, that is, if $X_0 \in O(n)$,

$$X(t)^{t}X(t) = X(t_{0})^{t}X(t_{0}) = X_{0}^{t}X_{0} = \mathrm{id}.$$

If $X_0 \in O(n)$, this proves the first case of the proposition. Since det $A = \pm 1$ when $A \in O(n)$, the second case follows by continuity of det X(t).

Preliminaries: Norms of Matrix-Valued functions. Let I = [a, b] be a closed interval, and denote by $C^0(I, \mathcal{M}_n(\mathbb{R}))$ the set of continuous functions $X : I \to \mathcal{M}_n(\mathbb{R})$. For any positive number k, we define

(1.9)
$$||X||_{I,k} := \sup\left\{e^{-kt}|X(t)|_{\mathcal{M}} \, ; \, t \in I\right\}$$

for $X \in C^0(I, M_n(\mathbb{R}))$. When k = 0, $|| \cdot ||_{I,0}$ is the *uniform norm* for continuous functions, which is complete. Similarly, one can prove the following in the same way:

Lemma 1.11. The norm $|| \cdot ||_{I,k}$ on $C^0(I, M_n(\mathbb{R}))$ is complete.

Linear Ordinary Differential Equations. We prove the fundamental theorem for *linear* ordinary differential equations.

Proposition 1.12. Let $\Omega(t)$ be a C^{∞} -function valued in $M_n(\mathbb{R})$ defined on an interval I. Then for each $t_0 \in I$, there exists the unique matrix-valued C^{∞} -function $X(t) = X_{t_0,id}(t)$ such that

(1.10)
$$\frac{dX(t)}{dt} = X(t)\Omega(t), \qquad X(t_0) = \mathrm{id}\,.$$

Proof. Uniqueness: Assume X(t) and Y(t) satisfy (1.10). Then

$$Y(t) - X(t) = \int_{t_0}^t (Y'(\tau) - X'(\tau)) d\tau = \int_{t_0}^t (Y(\tau) - X(\tau)) \Omega(\tau) d\tau \qquad \left(' = \frac{d}{dt}\right)$$

holds. Hence for an arbitrary closed interval $J \subset I$,

$$\begin{split} |Y(t) - X(t)|_{\mathcal{M}} &\leq \left| \int_{t_{0}}^{t} \left| \left(Y(\tau) - X(\tau) \right) \Omega(\tau) \right|_{\mathcal{M}} d\tau \right| \leq \left| \int_{t_{0}}^{t} |Y(\tau) - X(\tau)|_{\mathcal{M}} \left| \Omega(\tau) \right|_{\mathcal{M}} d\tau \right| \\ &= \left| \int_{t_{0}}^{t} e^{-k\tau} \left| Y(\tau) - X(\tau) \right|_{\mathcal{M}} e^{k\tau} \left| \Omega(\tau) \right|_{\mathcal{M}} d\tau \right| \leq ||Y - X||_{J,k} \sup_{J} |\Omega|_{\mathcal{M}} \left| \int_{t_{0}}^{t} e^{k\tau} d\tau \right| \\ &= ||Y - X||_{J,k} \frac{\sup_{J} |\Omega|_{\mathcal{M}}}{|k|} e^{kt} \left| 1 - e^{-k(t-t_{0})} \right| \leq ||Y - X||_{J,k} \sup_{J} |\Omega|_{\mathcal{M}} \frac{e^{kt}}{|k|} \end{split}$$

⁴SL $(n, \mathbb{R}) = \{A \in M_n(\mathbb{R}); \det A = 1\};$ the special lienar group.

 $^{{}^{5}}O(n) = \{A \in M_{n}(\mathbb{R}); {}^{t}AA = A^{t}A = id\}$: the orthogonal group; $SO(n) = \{A \in O(n); \det A = 1\}$: the special orthogonal group.

holds for $t \in J$. Thus, for an appropriate choice of $k \in \mathbb{R}$, it holds that

$$||Y - X||_{J,k} \leq \frac{1}{2} ||Y - X||_{J,k},$$

that is, $||Y - X||_{J,k} = 0$, proving Y(t) = X(t) for $t \in J$. Since J is arbitrary, Y = X holds on I. <u>Existence</u>: Let $J := [t_0, a] \subset I$ be a closed interval, and define a sequence $\{X_j\}$ of matrix-valued functions defined on I satisfying $X_0(t) = id$ and

(1.11)
$$X_{j+1}(t) = \mathrm{id} + \int_{t_0}^t X_j(\tau) \Omega(\tau) \, d\tau \quad (j = 0, 1, 2, \dots).$$

Let $k := 2 \sup_J |\Omega|_M$. Then

$$X_{j+1}(t) - X_{j}(t)|_{\mathcal{M}} \leq \int_{t_{0}}^{t} |X_{j}(\tau) - X_{j-1}(\tau)|_{\mathcal{M}} |\Omega(\tau)|_{\mathcal{M}} d\tau$$
$$\leq \frac{e^{k(t-t_{0})}}{|k|} \sup_{J} |\Omega|_{\mathcal{M}} ||X_{j} - X_{j-1}||_{J,k}$$

for an appropriate choice of $k \in \mathbb{R}$, and hence $||X_{j+1} - X_j||_{J,k} \leq \frac{1}{2}||X_j - X_{j-1}||_{J,k}$, that is, $\{X_j\}$ is a Cauchy sequence with respect to $|| \cdot ||_{J,k}$. Thus, by completeness (Lemma 1.11), it converges to some $X \in C^0(J, M_n(\mathbb{R}))$. By (1.11), the limit X satisfies

$$X(t_0) = \mathrm{id},$$
 $X(t) = \mathrm{id} + \int_{t_0}^t X(\tau) \Omega(\tau) d\tau.$

Applying the fundamental theorem of calculus, we can see that X satisfies $X'(t) = X(t)\Omega(t)$ (' = d/dt). Since J can be taken arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C^{∞} . Since $X'(t) = X(t)\Omega(t)$, the derivative X' of X is continuous. Hence X is of class C^1 , and so is $X(t)\Omega(t)$. Thus we have that X'(t) is of class C^1 , and then X is of class C^2 . Iterating this argument, we can prove that X(t) is of class C^r for arbitrary r.

Corollary 1.13. Let $\Omega(t)$ be a matrix-valued C^{∞} -function defined on an interval I. Then for each $t_0 \in I$ and $X_0 \in M_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function $X_{t_0,X_0}(t)$ defined on I such that

(1.12)
$$\frac{dX(t)}{dt} = X(t)\Omega(t), \quad X(t_0) = X_0 \quad \left(X(t) := X_{t_0, X_0}(t)\right)$$

In particular, $X_{t_0,X_0}(t)$ is of class C^{∞} in X_0 and t.

Proof. We rewrite X(t) in Proposition 1.12 as $Y(t) = X_{t_0,id}(t)$. Then the function

(1.13)
$$X(t) := X_0 Y(t) = X_0 X_{t_0, id}(t),$$

is desired one. Conversely, assume X(t) satisfies the conclusion. Noticing Y(t) is a regular matrix for all t because of Proposition 1.8,

$$W(t) := X(t)Y(t)^{-1}$$

satisfies

$$\frac{dW}{dt} = \frac{dX}{dt}Y^{-1} - XY^{-1}\frac{dY}{dt}Y^{-1} = X\Omega Y^{-1} - XY^{-1}Y\Omega Y^{-1} = O.$$

Hence

$$W(t) = W(t_0) = X(t_0)Y(t_0)^{-1} = X_0$$

Hence the uniqueness is obtained. The final part is obvious by the expression (1.13).

Proposition 1.14. Let $\Omega(t)$ and B(t) be matrix-valued C^{∞} -functions defined on I. Then for each $t_0 \in I$ and $X_0 \in M_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function defined on I satisfying

(1.14)
$$\frac{dX(t)}{dt} = X(t)\Omega(t) + B(t), \qquad X(t_0) = X_0.$$

Proof. Rewrite X in Proposition 1.12 as $Y := X_{t_0, id}$. Then

(1.15)
$$X(t) = \left(X_0 + \int_{t_0}^t B(\tau) Y^{-1}(\tau) \, d\tau\right) Y(t)$$

satisfies (1.14). Conversely, if X satisfies (1.14), $W := XY^{-1}$ satisfies

$$X' = W'Y + WY' = W'Y + WY\Omega, \quad X\Omega + B = WY\Omega + B,$$

and then we have $W' = BY^{-1}$. Since $W(t_0) = X_0$,

$$W = X_0 + \int_{t_0}^t B(\tau) Y^{-1}(\tau) \, d\tau$$

Thus we obtain (1.15).

Theorem 1.15. Let I and U be an interval and a domain in \mathbb{R}^m , respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞} -functions defined on $I \times U$ ($\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_m)$). Then for each $t_0 \in I$, $\boldsymbol{\alpha} \in U$ and $X_0 \in M_n(\mathbb{R})$, there exists the unique matrix-valued C^{∞} -function $X(t) = X_{t_0,X_0,\boldsymbol{\alpha}}(t)$ defined on I such that

(1.16)
$$\frac{dX(t)}{dt} = X(t)\Omega(t,\boldsymbol{\alpha}) + B(t,\boldsymbol{\alpha}), \qquad X(t_0) = X_0.$$

Moreover,

$$I \times I \times M_n(\mathbb{R}) \times U \ni (t, t_0, X_0, \boldsymbol{\alpha}) \mapsto X_{t_0, X_0, \boldsymbol{\alpha}}(t) \in M_n(\mathbb{R})$$

is a C^{∞} -map.

Proof. Let $\widetilde{\Omega}(t, \tilde{\alpha}) := \Omega(t + t_0, \alpha)$ and $\widetilde{B}(t, \tilde{\alpha}) = B(t + t_0, \alpha)$, and let $\widetilde{X}(t) := X(t + t_0)$. Then (1.16) is equivalent to

(1.17)
$$\frac{dX(t)}{dt} = \widetilde{X}(t)\widetilde{\Omega}(t,\tilde{\alpha}) + \widetilde{B}(t,\tilde{\alpha}), \quad \widetilde{X}(0) = X_0,$$

where $\tilde{\boldsymbol{\alpha}} := (t_0, \alpha_1, \dots, \alpha_m)$. There exists the unique solution $\widetilde{X}(t) = \widetilde{X}_{\mathrm{id}, X_0, \tilde{\boldsymbol{\alpha}}}(t)$ of (1.17) for each $\tilde{\boldsymbol{\alpha}}$ because of Proposition 1.14. So it is sufficient to show differentiability with respect to the parameter $\tilde{\boldsymbol{\alpha}}$. We set Z = Z(t) the unique solution of

(1.18)
$$\frac{dZ}{dt} = Z\widetilde{\Omega} + \widetilde{X}\frac{\partial\Omega}{\partial\alpha_j} + \frac{\partial B}{\partial\alpha_j}, \qquad Z(0) = O.$$

Then it holds that $Z = \partial \tilde{X} / \partial \alpha_j$ (Problem 1-2). In particular, by the proof of Proposition 1.14, it holds that

$$Z = \frac{\partial \widetilde{X}}{\partial \alpha_j} = \left(\int_0^t \left(\widetilde{X}(\tau) \frac{\partial \widetilde{\Omega}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_j} + \frac{\partial \widetilde{B}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_j} \right) Y^{-1}(\tau) d\tau \right) Y(t).$$

Here, Y(t) is the unique matrix-valued C^{∞} -function satisfying $Y'(t) = Y(t)\widetilde{\Omega}(t, \widetilde{\alpha})$, and Y(0) = id. Hence \widetilde{X} is a C^{∞} -function in $(t, \widetilde{\alpha})$.

Fundamental Theorem for Space Curves. As an application, we prove the fundamental theorem for space curves. A C^{∞} -map $\gamma: I \to \mathbb{R}^3$ defined on an interval $I \subset \mathbb{R}$ into \mathbb{R}^3 is said to be a *regular curve* if $\dot{\gamma} \neq \mathbf{0}$ holds on I. For a regular curve $\gamma(t)$, there exists a parameter change t = t(s) such that $\tilde{\gamma}(s) := \gamma(t(s))$ satisfies $|\tilde{\gamma}'(s)| = 1$. Such a parameter s is called the *arc-length parameter*.

Let $\gamma(s)$ be a regular curve in \mathbb{R}^3 parametrized by the arc-length satisfying $\gamma''(s) \neq \mathbf{0}$ for all s. Then

$$\boldsymbol{e}(s) := \gamma'(s), \qquad \boldsymbol{n}(s) := \frac{\gamma''(s)}{|\gamma''(s)|}, \qquad \boldsymbol{b}(s) := \boldsymbol{e}(s) \times \boldsymbol{n}(s)$$

forms a positively oriented orthonormal basis $\{e, n, b\}$ of \mathbb{R}^3 for each s. Regarding each vector as column vector, we have the matrix-valued function

(1.19)
$$\mathcal{F}(s) := (\boldsymbol{e}(s), \boldsymbol{n}(s), \boldsymbol{b}(s)) \in \mathrm{SO}(3).$$

in s, which is called the *Frenet frame* associated to the curve γ . Under the situation above, we set

$$\kappa(s) := |\gamma''(s)| > 0, \qquad \tau(s) := -\langle \boldsymbol{b}'(s), \boldsymbol{n}(s) \rangle,$$

which are called the *curvature* and *torsion*, respectively, of γ . Using these quantities, the Frenet frame satisfies

(1.20)
$$\frac{d\mathcal{F}}{ds} = \mathcal{F}\Omega, \qquad \Omega = \begin{pmatrix} 0 & -\kappa & 0\\ \kappa & 0 & -\tau\\ 0 & \tau & 0 \end{pmatrix}.$$

Proposition 1.16. The curvature and the torsion are invariant under the transformation $\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$ of \mathbb{R}^3 ($A \in SO(3)$, $\mathbf{b} \in \mathbb{R}^3$). Conversely, two curves $\gamma_1(s)$, $\gamma_2(s)$ parametrized by arclength parameter have common curvature and torsion, there exist $A \in SO(3)$ and $\mathbf{b} \in \mathbb{R}^3$ such that $\gamma_2 = A\gamma_1 + \mathbf{b}$.

Proof. Let κ , τ and \mathcal{F}_1 be the curvature, torsion and the Frenet frame of γ_1 , respectively. Then the Frenet frame of $\gamma_2 = A\gamma_1 + \mathbf{b}$ ($A \in SO(3)$, $\mathbf{b} \in \mathbb{R}^3$) is $\mathcal{F}_2 = A\mathcal{F}_1$. Hence both \mathcal{F}_1 and \mathcal{F}_2 satisfy (1.20), and then γ_1 and γ_2 have common curvature and torsion.

Conversely, assume γ_1 and γ_2 have common curvature and torsion. Then the frenet frame \mathcal{F}_1 , \mathcal{F}_2 both satisfy (1.20). Let \mathcal{F} be the unique solution of (1.20) with $\mathcal{F}(t_0) = \mathrm{id}$. Then by the proof of Corollary 1.13, we have $\mathcal{F}_j(t) = \mathcal{F}_j(t_0)\mathcal{F}(t)$ (j = 1, 2). In particular, since $\mathcal{F}_j \in \mathrm{SO}(3)$, $\mathcal{F}_2(t) = A\mathcal{F}_1(t)$ $(A := \mathcal{F}_2(t_0)\mathcal{F}_1(t_0)^{-1} \in \mathrm{SO}(3))$. Comparing the first column of these, $\gamma'_2(s) = A\gamma'_1(t)$ holds. Integrating this, the conclusion follows.

Theorem 1.17 (The fundamental theorem for space curves).

Let $\kappa(s)$ and $\tau(s)$ be C^{∞} -factions defined on an interval I satisfying $\kappa(s) > 0$ on I. Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ , respectively. Moreover, such a curve is unique up to transformation $\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$ ($A \in SO(3)$, $\mathbf{b} \in \mathbb{R}^3$) of \mathbb{R}^3 .

Proof. We have already shown the uniqueness in Proposition 1.16. We shall prove the existence: Let $\Omega(s)$ be as in (1.20), and $\mathcal{F}(s)$ the solution of (1.20) with $\mathcal{F}(s_0) = \text{id.}$ Since Ω is skew-symmetric, $\mathcal{F}(s) \in \text{SO}(3)$ by Proposition 1.10. Denoting the column vectors of \mathcal{F} by $\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}$, and let

$$\gamma(s) := \int_{s_0}^s \boldsymbol{e}(\sigma) \, d\sigma.$$

Then \mathcal{F} is the Frenet frame of γ , and κ , and τ are the curvature and torsion of γ , respectively. \Box

Exercises

1-1 Find the maximal solution of the initial value problem

$$\frac{dx}{dt} = \lambda x(a-x), \qquad x(0) = b,$$

where λ and a are positive constants, and b is a real number.

- **1-2** Verify that Z in (1.18) coincides with $\partial \widetilde{X} / \partial \alpha_j$.
- **1-3** Find an explicit expression of a space curve $\gamma(s)$ parametrized by the arc-length s, whose curvature and torsion are $a/(1+s^2)$ and $b/(1+s^2)$, respectively, where a and b are constants.