2 Integrability Conditions

Let $U \subset \mathbb{R}^{m}$ be a domain of $\left(\mathbb{R}^{m} ; u^{1}, \ldots, u^{m}\right)$ and consider an m-tuple of $n \times n$-matrix valued C^{∞}-maps

$$
\begin{equation*}
\Omega_{j}: \mathbb{R}^{m} \supset U \longrightarrow \mathrm{M}_{n}(\mathbb{R}) \quad(j=1, \ldots, m) \tag{2.1}
\end{equation*}
$$

In this section, we consider an initial value problem of a system of linear partial differential equations

$$
\begin{equation*}
\frac{\partial X}{\partial u^{j}}=X \Omega_{j} \quad(j=1, \ldots, m), \quad X\left(\mathrm{P}_{0}\right)=X_{0} \tag{2.2}
\end{equation*}
$$

where $\mathrm{P}_{0}=\left(u_{0}^{1}, \ldots, u_{0}^{m}\right) \in U$ is a fixed point, X is an $n \times n$-matrix valued unknown, and $X_{0} \in$ $\mathrm{M}_{n}(\mathbb{R})$. The chain rule yields the following:

Lemma 2.1. Let $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be a C^{∞} _map satisfying (2.2). Then for each smooth path $\gamma: I \rightarrow U$ defined on an interval $I \subset \mathbb{R}, \hat{X}:=X \circ \gamma: I \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfies the ordinary differential equation

$$
\begin{equation*}
\frac{d \hat{X}}{d t}(t)=\hat{X}(t) \Omega_{\gamma}(t) \quad\left(\Omega_{\gamma}(t):=\sum_{j=1}^{m} \Omega_{j} \circ \gamma(t) \frac{d u^{j}}{d t}(t)\right) \tag{2.3}
\end{equation*}
$$

on I, where $\gamma(t)=\left(u^{1}(t), \ldots, u^{m}(t)\right)$.
Proposition 2.2. If a C^{∞} _map $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ defined on a domain $U \subset \mathbb{R}^{m}$ satisfies (2.2) with $X_{0} \in \mathrm{GL}(n, \mathbb{R})$, then $X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ for all $\mathrm{P} \in U$. In addition, if $\Omega_{j}(j=1, \ldots, m)$ are skew-symmetric and $X_{0} \in \mathrm{SO}(n)$, then $X(\mathrm{P}) \in \mathrm{SO}(n)$ holds for all $\mathrm{P} \in U$.

Proof. Since U is connected, there exists a continuous path $\gamma_{0}:[0,1] \rightarrow U$ such that $\gamma_{0}(0)=\mathrm{P}_{0}$ and $\gamma_{0}(1)=$ P. By Whitney's approximation theorem (cf. Theorem 6.21 in [Lee13]), there exists a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P approximating γ_{0}. Since $\hat{X}:=X \circ \gamma$ satisfies (2.3) with $\hat{X}(0)=X_{0}$, Proposition 1.8 yields that $\operatorname{det} \hat{X}(1) \neq 0$ whenever $\operatorname{det} X_{0} \neq 0$. Moreover, if Ω_{j} 's are skew-symmetric, so is $\Omega_{\gamma}(t)$ in (2.3). Thus, by Proposition 1.10, we obtain the latter half of the proposition.

Proposition 2.3. If a matrix-valued C^{∞} function $X: U \rightarrow \mathrm{GL}(n, \mathbb{R})$ satisfies (2.2), it holds that

$$
\begin{equation*}
\frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}=\Omega_{j} \Omega_{k}-\Omega_{k} \Omega_{j} \tag{2.4}
\end{equation*}
$$

for each (j, k) with $1 \leqq j<k \leqq m$.
Proof. Differentiating (2.2) by u^{k}, we have

$$
\frac{\partial^{2} X}{\partial u^{k} \partial u^{j}}=\frac{\partial X}{\partial u^{k}} \Omega_{j}+X \frac{\partial \Omega_{j}}{\partial u^{k}}=X\left(\frac{\partial \Omega_{j}}{\partial u^{k}}+\Omega_{k} \Omega_{j}\right) .
$$

On the other hand, switching the roles of j and k, we get

$$
\frac{\partial^{2} X}{\partial u^{j} \partial u^{k}}=X\left(\frac{\partial \Omega_{k}}{\partial u^{j}}+\Omega_{j} \Omega_{k}\right) .
$$

Since X is of class C^{∞}, the left-hand sides of these equalities coincide, and so are the right-hand sides. Since $X \in \operatorname{GL}(n, \mathbb{R})$, the conclusion follows.
26. April, 2022. (Revised: 10. May, 2022)

The equality (2.4) is called the integrability condition or compatibility condition of (2.2).
Lemma 2.4. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ be C^{∞}-maps defined on a domain $U \subset \mathbb{R}^{m}$ which satisfy (2.4). Then for each smooth map

$$
\sigma: D \ni(t, w) \longmapsto \sigma(t, w)=\left(u^{1}(t, w), \ldots, u^{m}(t, w)\right) \in U
$$

defined on a domain $D \subset \mathbb{R}^{2}$, it holds that

$$
\begin{equation*}
\frac{\partial T}{\partial w}-\frac{\partial W}{\partial t}-T W+W T=0 \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
T:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}, \quad W:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial w} \quad\left(\widetilde{\Omega}_{j}:=\Omega_{j} \circ \sigma\right) . \tag{2.6}
\end{equation*}
$$

Proof. By the chain rule, we have

$$
\begin{aligned}
\frac{\partial T}{\partial w} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial w \partial t}, \\
\frac{\partial W}{\partial t} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial t} \frac{\partial u^{j}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} \\
& =\sum_{j, k=1}^{m} \frac{\partial \Omega_{k}}{\partial u^{j}} \frac{\partial u^{j}}{\partial t} \frac{\partial u^{k}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\partial T}{\partial w} & -\frac{\partial W}{\partial t}=\sum_{j, k=1}^{m}\left(\frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
& =\sum_{j, k=1}^{m}\left(\widetilde{\Omega}_{j} \widetilde{\Omega}_{k}-\widetilde{\Omega}_{k} \widetilde{\Omega}_{j}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
& =\left(\sum_{j=1}^{m} \tilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}\right)\left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w}\right)-\left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w}\right)\left(\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}\right) \\
& =T W-W T .
\end{aligned}
$$

Thus (2.5) holds.
Integrability of linear systems. The main theorem in this section is the following Frobenius' theorem:

Theorem 2.5. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ be C^{∞}-functions defined on a simply connected domain $U \subset \mathbb{R}^{m}$ satisfying (2.4). Then for each $\mathrm{P}_{0} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique $n \times n$-matrix valued function $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (2.2). Moreover,

- if $X_{0} \in \operatorname{GL}(n, \mathbb{R}), X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ holds on U,
- if $X_{0} \in \mathrm{SO}(n)$ and $\Omega_{j}(j=1, \ldots, m)$ are skew-symmetric matrices, $X \in \mathrm{SO}(n)$ holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.2. We show the existence of X : Take a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P . Then by Theorem 1.15 , there exists a unique C^{∞}-map $\hat{X}:[0,1] \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (2.3) with initial condition $\hat{X}(0)=X_{0}$.

We shall show that the value $\hat{X}(1)$ does not depend on choice of paths joining P_{0} and P . To show this, choose another smooth path $\tilde{\gamma}$ joining P_{0} and P . Since U is simply connected, there exists a homotopy between γ and $\tilde{\gamma}$, that is, there exists a continuous map $\sigma_{0}:[0,1] \times[0,1] \ni$ $(t, w) \mapsto \sigma(t, w) \in U$ satisfying

$$
\begin{align*}
\sigma_{0}(t, 0) & =\gamma(t), & \sigma_{0}(t, 1) & =\tilde{\gamma}(t) \\
\sigma_{0}(0, w) & =\mathrm{P}_{0}, & \sigma_{0}(1, w) & =\mathrm{P} \tag{2.7}
\end{align*}
$$

Then, by Whitney's approximation theorem (Theorem 6.21 in [Lee13]) again, there exists a smooth map $\sigma:[0,1] \times[0,1] \rightarrow U$ satisfying the same boundary conditions as (2.7):

$$
\begin{align*}
\sigma(t, 0) & =\gamma(t), & \sigma(t, 1) & =\tilde{\gamma}(t) \tag{2.8}\\
\sigma(0, w) & =\mathrm{P}_{0}, & \sigma(1, w) & =\mathrm{P}
\end{align*}
$$

We set T and W as in (2.6). For each fixed $w \in[0,1]$, there exists $X_{w}:[0,1] \rightarrow \mathrm{M}_{n}(\mathbb{R})$ such that

$$
\frac{d X_{w}}{d t}(t)=X_{w}(t) T(t, w), \quad X_{w}(0)=X_{0}
$$

Since $T(t, w)$ is smooth in t and w, the map

$$
\check{X}:[0,1] \times[0,1] \ni(t, w) \mapsto X_{w}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

is a smooth map, because of smoothness in parameter α in Theorem 1.15. To show that $\hat{X}(1)=$ $\check{X}(1,0)$ does not depend on choice of paths, it is sufficient to show that

$$
\begin{equation*}
\frac{\partial \check{X}}{\partial w}=\check{X} W \tag{2.9}
\end{equation*}
$$

holds on $[0,1] \times[0,1]$. In fact, by $(2.8), W(1, w)=0$ for all $w \in[0,1]$, and then (2.9) implies that $\check{X}(1, w)$ is constant.

We prove (2.9): By definition, it holds that

$$
\begin{equation*}
\frac{\partial \check{X}}{\partial t}=\check{X} T, \quad \check{X}(0, w)=X_{0} \tag{2.10}
\end{equation*}
$$

for each $w \in[0,1]$. Hence by (2.5),

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{\partial \check{X}}{\partial w} & =\frac{\partial^{2} \check{X}}{\partial t \partial w}=\frac{\partial^{2} \check{X}}{\partial w \partial t}=\frac{\partial}{\partial w}(\check{X} T) \\
& =\frac{\partial \check{X}}{\partial w} T+\check{X} \frac{\partial T}{\partial w}=\frac{\partial \check{X}}{\partial w} T+\check{X}\left(\frac{\partial W}{\partial t}+T W-W T\right) \\
& =\frac{\partial \check{X}}{\partial w} T+\check{X} \frac{\partial W}{\partial t}+\frac{\partial \check{X}}{\partial t} W-\check{X} W T \\
& =\frac{\partial}{\partial t}(\check{X} W)+\left(\frac{\partial \check{X}}{\partial w}-\check{X} W\right) T
\end{aligned}
$$

So, the function $Y_{w}(t):=\partial \check{X} / \partial w-\check{X} W$ satisfies the ordinary differential equation

$$
\frac{d Y_{w}}{d t}(t)=Y_{w}(t) T(t, w), \quad Y_{w}(0)=O
$$

for each $w \in[0,1]$. Thus, by the uniqueness of the solution, $Y_{w}(t)=O$ holds on $[0,1] \times[0,1]$. Hence we have (2.9).

Thus, $\hat{X}(1)$ depends only the end point P of the path. Hence we can set $X(\mathrm{P}):=\hat{X}(1)$ for each $\mathrm{P} \in U$, and obtain a map $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$. Finally we show that X is the desired solution. The initial condition $X\left(\mathrm{P}_{0}\right)=X_{0}$ is obviously satisfied. On the other hand, if we set

$$
Z(\delta):=X\left(u^{1}, \ldots, u^{j}+\delta, \ldots, u^{m}\right)
$$

$Z(\delta)$ satisfies the equation (2.3) for the path $\gamma(\delta):=\left(u^{1}, \ldots, u^{j}+\delta, \ldots, u^{m}\right)$ with $Z(0)=X(\mathrm{P})$. Since $\Omega_{\gamma}=\Omega_{j}$,

$$
\frac{\partial X}{\partial u^{j}}(\mathrm{P})=\left.\frac{d Z}{d \delta}\right|_{\delta=0}=Z(0) \Omega_{j}(\mathrm{P})=X(\mathrm{P}) \Omega_{j}(\mathrm{P})
$$

which completes the proof.

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$
\omega=\sum_{j=1}^{m} \alpha_{j}\left(u^{1}, \ldots, u^{m}\right) d u^{j}
$$

defined on a simply connected domain $U \subset \mathbb{R}^{m}$ is closed, that $i s, d \omega=0$ holds, then there exists a C^{∞}-function f on U such that $d f=\omega$. Such a function f is unique up to additive constants.

Proof. Since

$$
d \omega=\sum_{i<j}\left(\frac{\partial \alpha_{j}}{\partial u^{i}}-\frac{\partial \alpha_{i}}{\partial u^{j}}\right) d u^{i} \wedge d u^{j}
$$

the assumption is equivalent to

$$
\begin{equation*}
\frac{\partial \alpha_{j}}{\partial u^{i}}-\frac{\partial \alpha_{i}}{\partial u^{j}}=0 \quad(1 \leqq i<j \leqq m) \tag{2.11}
\end{equation*}
$$

Consider a system of linear partial differential equations with unknown ξ, a 1×1-matrix valued function (i.e. a real-valued function), as

$$
\begin{equation*}
\frac{\partial \xi}{\partial u^{j}}=\xi \alpha_{j} \quad(j=1, \ldots, m), \quad \xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1 \tag{2.12}
\end{equation*}
$$

Then it satisfies (2.4) because of (2.11). Hence by Theorem 2.5, there exists a smooth function $\xi\left(u^{1}, \ldots, u^{m}\right)$ satisfying (2.12). In particular, Proposition 1.8 yields $\xi=\operatorname{det} \xi$ never vanishes. Hence $\xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1>0$ means that $\xi>0$ holds on U. Letting $f:=\log \xi$, we have the function f satisfying $d f=\omega$.

Next, we show the uniqueness: if two functions f and g satisfy $d f=d g=\omega$, it holds that $d(f-g)=0$. Hence by connectivity of $U, f-g$ must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^{2} with the complex plane \mathbb{C}. It is well-known that a function

$$
\begin{equation*}
f: U \ni u+\mathrm{i} v \longmapsto \xi(u, v)+\mathrm{i} \eta(u, v) \in \mathbb{C} \quad(\mathrm{i}=\sqrt{-1}) \tag{2.13}
\end{equation*}
$$

defined on a domain $U \subset \mathbb{C}$ is holomorphic if and only if it satisfies the following relation, called the Cauchy-Riemann equations:

$$
\begin{equation*}
\frac{\partial \xi}{\partial u}=\frac{\partial \eta}{\partial v}, \quad \frac{\partial \xi}{\partial v}=-\frac{\partial \eta}{\partial u} \tag{2.14}
\end{equation*}
$$

Definition 2.7. A function $f: U \rightarrow \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^{2}$ is said to be harmonic if it satisfies

$$
\Delta f=f_{u u}+f_{v v}=0
$$

The operator Δ is called the Laplacian.
Proposition 2.8. If function f in (2.13) is holomorphic, $\xi(u, v)$ and $\eta(u, v)$ are harmonic functions.

Proof. By (2.14), we have

$$
\xi_{u u}=\left(\xi_{u}\right)_{u}=\left(\eta_{v}\right)_{u}=\eta_{v u}=\eta_{u v}=\left(\eta_{u}\right)_{v}=\left(-\xi_{v}\right)_{v}=-\xi_{v v}
$$

Hence $\Delta \xi=0$. Similarly,

$$
\eta_{u u}=\left(-\xi_{v}\right)_{u}=-\xi_{v u}=-\xi_{u v}=-\left(\xi_{u}\right)_{v}=-\left(\eta_{v}\right)_{v}=-\eta_{v v}
$$

Thus $\Delta \eta=0$.
Theorem 2.9. Let $U \subset \mathbb{C}=\mathbb{R}^{2}$ be a simply connected domain and $\xi(u, v)$ a C^{∞}-function harmonic on U^{6}. Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v)+\mathrm{i} \eta(u, v)$ is holomorphic on U.

Proof. Let $\alpha:=-\xi_{v} d u+\xi_{u} d v$. Then by the assumption,

$$
d \alpha=\left(\xi_{v v}+\xi_{u u}\right) d u \wedge d v=0
$$

holds, that is, α is a closed 1-form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 2.6), there exists a function η such that $d \eta=\eta_{u} d u+\eta_{v} d v=\alpha$. Such a function η satisfies (2.14) for given ξ. Hence $\xi+\mathrm{i} \eta$ is holomorphic in $u+\mathrm{i} v$.

Example 2.10. A function $\xi(u, v)=e^{u} \cos v$ is harmonic. Set

$$
\alpha:=-\xi_{v} d u+\xi_{u} d v=e^{u} \sin v d u+e^{u} \cos v d v
$$

Then $\eta(u, v)=e^{u} \sin v$ satisfies $d \eta=\alpha$. Hence

$$
\xi+\mathrm{i} \eta=e^{u}(\cos v+\mathrm{i} \sin v)=e^{u+\mathrm{i} v}
$$

is holomorphic in $u+\mathrm{i} v$.
Definition 2.11. The harmonic function η in Theorem 2.9 is called the conjugate harmonic function of ξ.

Exercises

2-1 Let $\xi(u, v):=\log \sqrt{u^{2}+v^{2}}$ be a function defined on $U:=\mathbb{R}^{2} \backslash\{(0,0)\}$
(1) Show that ξ is harmonic on U.
(2) Find the conjugate harmonic function η of ξ on

$$
V=\mathbb{R}^{2} \backslash\{(u, 0) \mid u \leqq 0\} \subset U
$$

(3) Show that there exists no conjugate harmonic function of ξ defined on U.

[^0]2-2 Let $\theta=\theta(u, v)$ be a smooth function on a domain $U \subset \mathbb{R}^{2}$ such that $0<\theta<\pi$, and set

$$
\Omega(u, v):=\left(\begin{array}{ccc}
\theta_{u} \cot \theta & 0 & \cot \theta \\
-\theta_{u} \csc \theta & 0 & -\csc \theta \\
0 & \sin \theta & 0
\end{array}\right), \quad \Lambda(u, v):=\left(\begin{array}{ccc}
0 & -\theta_{v} \csc \theta & -\csc \theta \\
0 & \theta_{v} \cot \theta & \cot \theta \\
\sin \theta & 0 & 0
\end{array}\right) .
$$

Prove that the compatibility condition of a system of partial differentail equation

$$
\frac{\partial \mathcal{F}}{\partial u}=\mathcal{F} \Omega, \quad \frac{\partial \mathcal{F}}{\partial v}=\mathcal{F} \Lambda
$$

is equivalent to

$$
\theta_{u v}=\sin \theta
$$

2-3 Let $\boldsymbol{v}=\boldsymbol{v}(x, y, z)$ be a vector field defined on a simply connected domain U in $\left(\mathbb{R}^{3} ;(x, y, z)\right)$. Assume that \boldsymbol{v} is irrotational, that is, $\operatorname{rot} \boldsymbol{v}=\mathbf{0}$. Then there exists a function $\varphi: U \rightarrow \mathbb{R}$ such that $\boldsymbol{v}=\operatorname{grad} \varphi$.

[^0]: ${ }^{6}$ The theorem holds under the assumption of C^{2}-differentiablity.

