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2 Integrability Conditions

Let U C R™ be a domain of (R™;u!,...,u™) and consider an m-tuple of n x n-matrix valued
C*°-maps
(2.1) Q2;:R™" > U — M,(R) (j=1,...,m).

In this section, we consider an initial value problem of a system of linear partial differential equa-
tions

0X )
where Pg = (uf,...,u5") € U is a fixed point, X is an n x n-matrix valued unknown, and Xy €

M,,(R). The chain rule yields the following:

Lemma 2.1. Let X: U — M,(R) be a C*-map satisfying (2.2). Then for each smooth path
~v: I — U defined on an interval I C R, X := X oy : I — M, (R) satisfies the ordinary differential
equation

(2.3) =X 2,0 =D 2090 % 1)
j=1

on I, where y(t) = (u'(t),...,u™(t)).

Proposition 2.2. If a C®-map X: U — M,(R) defined on a domain U C R™ satisfies (2.2)
with Xy € GL(n,R), then X(P) € GL(n,R) for all P € U. In addition, if 2; (j =1,...,m) are
skew-symmetric and Xo € SO(n), then X (P) € SO(n) holds for allP € U.

Proof. Since U is connected, there exists a continuous path ~g: [0,1] — U such that vo(0) = Py
and (1) = P. By Whitney’s approximation theorem (cf. Theorem 6.21 in [Leel3]), there exists
a smooth path ~: [0,1] — U joining Py and P approximating vo. Since X := X o v satisfies (2.3)
with X (0) = X, Proposition 1.8 yields that det X (1) # 0 whenever det X, # 0. Moreover, if 2;’s
are skew-symmetric, so is £2,(¢) in (2.3). Thus, by Proposition 1.10, we obtain the latter half of
the proposition. O

Proposition 2.3. If a matriz-valued C* function X : U — GL(n,R) satisfies (2.2), it holds that

002; 082

for each (j,k) with 1 < j <k <m.

Proof. Differentiating (2.2) by u*, we have

02X 0X 052, 012,
— =+ X =X L+ 0.
duFouw a0 T Guk (auk % j)

On the other hand, switching the roles of j and k, we get

PX (8Qk

Dwouk am+@%)

Since X is of class C'*°, the left-hand sides of these equalities coincide, and so are the right-hand
sides. Since X € GL(n,R), the conclusion follows. O
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The equality (2.4) is called the integrability condition or compatibility condition of (2.2).

Lemma 2.4. Let 2;: U — M,(R) (j = 1,...,m) be C*-maps defined on a domain U C R™
which satisfy (2.4). Then for each smooth map

o: D3 (t,w) — o(t,w) = (u'(t,w),...,u™(t,w)) € U
defined on a domain D C R?, it holds that
or _ow

2. — —TW T =
(2.5) e En + W 0,
where
m - 8u-7 m - 8uj .
j=1 j=1

Proof. By the chain rule, we have

or i 082; ouk du? Em: ~ 9]

w = 2= out ow ot 22 guar

Js Jj=1
ow i 042; ouk du? T 9%
v _ el i 0.2
o = 2= ouk ot ow T =Y oiaw
J,k=1 j=1
" 90, Ol OuF "L 92
=2 %w ot 0w "2V am0
J,k=1 j=1
Hence
OT oW _ (00, on) ot ow
ow ot ~ ouk  Ouw ) Ow Ot
L ~ ~\ OuF oud
= 3 (20— 0uly) 5o
7,k=1
_ " Ol LN T T Quk T Oud
= ( %% ) <Z”aw) - (Z”aw> (Z”jat)
j=1 k=1 k=1 j=1
=TW — WT.

Thus (2.5) holds.

Integrability of linear systems. The main theorem in this section is the following Frobenius’
theorem:

Theorem 2.5. Let £2;: U — M, (R) (j =1,...,m) be C*™-functions defined on a simply connected
domain U C R™ satisfying (2.4). Then for each Py € U and Xo € M,,(R), there exists the unique
n X n-matriz valued function X : U — M, (R) satisfying (2.2). Moreover,

o if Xo € GL(n,R), X(P) € GL(n,R) holds on U,
o if Xo € SO(n) and £2; (j =1,...,m) are skew-symmetric matrices, X € SO(n) holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.2. We show the existence of X: Take
a smooth path ~: [0,1] — U joining Py and P. Then by Theorem 1.15, there exists a unique
C*-map X: [0,1] — M, (R) satisfying (2.3) with initial condition X (0) = X.
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We shall show that the value X (1) does not depend on choice of paths joining Py and P. To
show this, choose another smooth path ¥ joining Py and P. Since U is simply connected, there
exists a homotopy between v and #, that is, there exists a continuous map oq: [0,1] x [0,1] 2
(t,w) — o(t,w) € U satisfying

UO(tv 0) = V(t)ﬂ UO(tv 1) = ﬁ(t),

(27) Uo(o,w) :PO, 0'0(].,’UJ) :P

Then, by Whitney’s approximation theorem (Theorem 6.21 in [Leel3]) again, there exists a smooth
map o: [0,1] x [0,1] — U satisfying the same boundary conditions as (2.7):

U(t7 O) = fY(t)v O'(t, 1) = :Y(t)v

(2:8) (0, w) = Py, o(l,w) =P.

We set T and W as in (2.6). For each fixed w € [0, 1], there exists X,,: [0,1] — M, (R) such that

%(t) = X, (t)T(t,w), Xw(0) = Xo.

Since T'(t,w) is smooth in ¢ and w, the map

X:[0,1] x [0,1] 3 (t,w) — Xy (t) € M, (R)

is a smooth map, because of smoothness in parameter a in Theorem 1.15. To show that X (1) =

X(1,0) does not depend on choice of paths, it is sufficient to show that

oxX
2.9 — =XW
(2.9) o
holds on [0,1] x [0,1]. In fact, by (2.8), W(1,w) = 0 for all w € [0,1], and then (2.9) implies that
X (1,w) is constant.
We prove (2.9): By definition, it holds that

(2.10) aa—): =XT, X(0,w)= X

for each w € [0, 1]. Hence by (2.5),

o0X 9°X 92X 0

ot dw — Otdw  Jwdt @(XT)
:ZiT-s—XZi:ZET—&-X(iK—&-TW—WT)
:%T+X%/+%W—XWT
= %(XW) + (gf XW) T.

So, the function Yy, (t) := 0X /0w — XW satisfies the ordinary differential equation

dY,
F(t) =Y,(t)T(t,w), Y,(0)=0

for each w € [0,1]. Thus, by the uniqueness of the solution, Y,,(t) = O holds on [0,1] x [0, 1].
Hence we have (2.9).
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Thus, X (1) depends only the end point P of the path. Hence we can set X (P) := X (1) for
each P € U, and obtain a map X: U — M, (R). Finally we show that X is the desired solution.
The initial condition X (Py) = Xj is obviously satisfied. On the other hand, if we set

Z(8) = X(u',...,ul 4+6,...,u™),

Z(6) satisfies the equation (2.3) for the path () := (u!,...,u’ +4,...,u™) with Z(0) = X(P).
Since 2, = (2},

0X dzZ
57 P)= G5 | _ = Z0)2,(P) = X(P);(P)

which completes the proof. O

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form
w = Zaj(ul, e ,Um) d’U/j
j=1

defined on a simply connected domain U C R™ is closed, that is, dw = 0 holds, then there exists a
C*®-function f on U such that df = w. Such a function f is unique up to additive constants.

Proof. Since

Oo; O, - »
dw = L 1) du' A du!
Z ( out Oud ) ’
1<J
the assumption is equivalent to
OJaj  Oay

(2.11) oul Aud

A

=0 (I1Si<j<m).
Consider a system of linear partial differential equations with unknown &, a 1 x 1-matrix valued
function (i.e. a real-valued function), as

(2.12) % =¢a; (G=1,....m),  &up,...,uy") =1
Then it satisfies (2.4) because of (2.11). Hence by Theorem 2.5, there exists a smooth function
E(ut,...,u™) satisfying (2.12). In particular, Proposition 1.8 yields & = det& never vanishes.
Hence &(ug,...,uf") = 1 > 0 means that £ > 0 holds on U. Letting f := log&, we have the
function f satisfying df = w.

Next, we show the uniqueness: if two functions f and g satisfy df = dg = w, it holds that
d(f — g) = 0. Hence by connectivity of U, f — g must be constant. O

Application: Conjugation of Harmonic functions. In this paragraph, we identify R? with
the complex plane C. It is well-known that a function

(2.13) frUu+ive— &(u,0) +in(u,v) €C  (i=v-1)

defined on a domain U C C is holomorphic if and only if it satisfies the following relation, called
the Cauchy-Riemann equations:

o8 On g On

(2.14) % —_— %7 % —_— _%.
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Definition 2.7. A function f: U — R defined on a domain U C R? is said to be harmonic if it
satisfies

Af = fuu +fvv =0.
The operator A is called the Laplacian.

Proposition 2.8. If function f in (2.13) is holomorphic, {(u,v) and n(u,v) are harmonic func-
tions.

Proof. By (2.14), we have

Euu = (fu)u = (nv)u = Nvu = Nuv = (nu)v = (_gv)v = _§U’U'
Hence A& = 0. Similarly,
Nuu = (_gv)u = —&u = —&uo = _(gu)v = _(771))11 = —Thw-
Thus An = 0. O

Theorem 2.9. Let U C C = R? be a simply connected domain and &(u,v) a C™-function harmonic
on US. Then there exists a C° harmonic functionn on U such that &(u,v)+in(u,v) is holomorphic
onU.

Proof. Let a:= —&, du + &, dv. Then by the assumption,
do = (§pp + Euu) du Adv =0

holds, that is, a is a closed 1-form. Hence by simple connectivity of U and the Poincaré’s lemma
(Theorem 2.6), there exists a function n such that dn = n, du + 1, dv = a. Such a function 7
satisfies (2.14) for given £. Hence £ + 17 is holomorphic in u + iv. O

Example 2.10. A function {(u,v) = e" cosv is harmonic. Set
a:=—&du+ &, dv=e"sinvdu+ e cosvdv.
Then n(u,v) = e*sinv satisfies dn = a. Hence
£4+in=e"(cosv +isinv) = etV
is holomorphic in v + iwv.

Definition 2.11. The harmonic function 7 in Theorem 2.9 is called the conjugate harmonic func-
tion of &.

Ezxercises
2-1 Let £(u,v) := log vu2 + v2 be a function defined on U := R? \ {(0,0)}

(1) Show that £ is harmonic on U.

(2) Find the conjugate harmonic function 7 of £ on
V=R*\ {(x,0)|u L0} CU.

(3) Show that there exists no conjugate harmonic function of £ defined on U.

6The theorem holds under the assumption of C2-differentiablity.
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2-2

2-3

Let 0 = 6(u,v) be a smooth function on a domain U C R? such that 0 < § < 7, and set

0, cot 0 0 cot 0 0 —0,cscl —cscl
2(u,v) :=[ —0ycscd 0 —cscld ], Alu,v):=1] 0 0,cotf  cotd
0 sin @ 0 sin 0 0 0

Prove that the compatibility condition of a system of partial differentail equation

oF oOF
— =F0 — =FA
ou Fi, v 4
is equivalent to
Oyv = sin 6.

Let v = v(x,9, 2) be a vector field defined on a simply connected domain U in (R?; (z,v, 2)).
Assume that v is drrotational, that is, rotv = 0. Then there exists a function ¢: U — R
such that v = grad .



