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3 A review of surface theory

In this section, we review the classical surface theory in the Euclidean 3-space. The textbook
[UY17] is one of the fundamental references of this material.

3.1 Preliminaries

Euclidean space Let R? be the Euclidean 3-space, that is, the 3-dimensional affine space R?

endowed with the Euclidean inner product “-”, where”
x! y
(3.1) x -y ="zy =2ty + 2%y% + 23y, where = [22]|, y=|v?| R
3 3
€z Y

The Euclidean norm | | and the Euclidean distance d( , ) is defined as

(32)  |el=vEoz= /(@) + @22+ (@32, dzy)=ly-z (zyeR’).

A map f: R® — R? is called an isometry if it preserves the distance function d: d(f(z), f(y)) =
d(x,y) (z,y € R%).

Fact 3.1. A map f: R3 = R? is an isometry if and only if f is in a form
(3.3) f(x)=Axz+b (A€ O(3),bcR?),
where O(3) is the set of 3 x 3 orthogonal matrices.

An isometry in (3.3) is said to be orientation preserving if A € SO(3), that is, A is an orthogonal
matrix with det A = 1.
The outer product or vector product of & x y of x, y € R3 is defined by

(3.4) det(x,y,2) = (x X y) - 2.

Immersed surfaces Let U C R? be a domain of the uv-plane R2. A C®-map p: U — R? is
called an immersion or a parametrization of a reqular surface if

0 0
(3.5) pu(u,v) := a—p(um), and  py(u,v) := a—p(u,v) are linearly independent
u v

at each point (u,v) € U. The unit normal vector field to an immersion p: U — R? is a C*°-map
v: U — R? satisfying

(36) V'pu:V'pv:07 |V‘:1
for each point on U.
The first fundamental form ds? is defined by
(3.7) ds*:=dp-dp= FEdu®+ 2F dudv + G dv?,
(E = Pu  Pus I 1= Py Pv = Do - Pu, G 1= py 'pv)v

where the subscript u (resp. v) means the partial derivative with respect to the variable u (resp. v).
The three functions E, ' and G defined on U are called the coefficients of the first fundamental
form.
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Similarly, taking account of the identity

Vu'pv:(V'pv)u_y'pvuzo_y'pvu:_V'puv:l/v'pu7

we define the second fundamental form as

(3.8) II:= —dv-dp= Ldu®+2M dudv + N dv?,
(L = —Pu- ViuM = TPuVy = —Pou Vqu = —Pu Vv)~

The symmetric matrices

~ (E F D - L M Y
I:= (F G) = (t§v> (puapv)7 I .= (M N) = - (tiv) (Vuvyv)

are called the first and second fundamental matrices, respectively.
By the Cauchy-Schwartz inequality, it holds that

EG — F? = |pu)?|po]> = (pu - pv)? > 0,

and then the first fundamental matrix I is a regular matrix. The area element of the surface is
defined as

(3.9) dA =V EG — F?dudv.

In fact, the area of a part of surface corresponding to a relatively compact domain 2 C U is

computed as
A($2) = //7dA://7\/EG—F2dudv.
9] 2

Since T is regular, the matrix

~ Al Al
3.10 A::11]I:< ! 2),
(10 e

called the Weingarten matriz, is defined. It is known that the eigenvalues A\; and Ay of A are real
numbers, and called the principal curvatures. The Gaussian curvature K and the mean curvature
H are defined as

det IT

(311) K := )\1)\2 =detA= =,
det I

1 1

3.2 Gauss frames

To simplify computations, and for a future generalization for higher dimensional case, we switch
the notation here to the “index” style. Write the coordinate system of U C R? by (u!, u?) instead
of (u,v), and denote

of of

f,lzw7 f,2=@’

that is, the subscript number following a comma means the partial derivative with respect to the
corresponding variable. Using these notations, the first fundamental form is expressed as

2
(3.12) ds* =dp-dp= ") gijdu’ du’, (9ij =D Pj)-

ij=1
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Similarly, the second fundamental form is written as

2
(3.13) II =—dp-dv = Z hi; du' du?, (hij == —=pi-Vj=—Dj Vi=Dsj V).

ij=1

Since the first fundamental matrix I = (9ij)i,j=1,2 has positive determinant, its inverse matrix

exists. We denote the component of the inverse by I ! = (¢/), using superscripts instead of
subscripts. By definition, it hold that

(i=1J)

(otherwise),

2
(3.14) g =g and E gmgkj =0; = {O

where 0 stands for Kronecker’s delta symbol. Using these, the Weingarten matrix A as in (3.10)
and the Gaussian curvature K in (3.11) are expressed as

det(hij)

2
3.15 A= (AD), A= gFn, K =detA=—-12
(3:19) o 2" det(g,)

Since p is an immersion, {p(u',u?),p2(u',u?),v(u',u?)} are linearly independent for each
point (u!,u?) € U. Hence we obtain a smooth map

(3.16) F: U3 (uh,v?) = (pa(u',u?),pa(ut,v?), v(u',uv?)) € GL(3,R),

where GL(3,R) is the set of 3 x 3 regular matrices with real components. The map F is called the
Gauss frame of the surface p.

Theorem 3.2. The Gauss frame F satisfies
ry ri -Al
oOF Y ,
(3.17) = FO, Q= (r2 i —at G=1,2),
hij hy; O

where hi;’s are the coefficients of the second fundamental form, A; ’s are the components of the
Weingarten matriz, and

2
1 . .
(3.18) rf =5 > M gis + g —gia), (LG k=12)
=1

The functions I 1’; in (3.18) are called the Christoffel symbols, and the equation (3.17) is called
the Gauss-Weingarten formula. By decomposing F into columns, the Gauss-Weingarten formula

is restated as

(319) D,ij

(Z Jp z) + hijv,

(3.20) v, = —ZAJpl

The equality (3.19) and (3.20) are called the Gauss formula and Weingarten formula, respectively.

Proof of Theorem 3.2. Since {p.1,p.a,v} is a basis of R? at each point (u!,u?) € U, the second
derivative p;; is expressed as a linear combination of {p1,p2,v}:

2
(3'21) p,i’ = A7]p 1 + Asz 2 + nljy - <Z Asz l) + nljya
=1
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where Aﬁj and 7;; are smooth functions in (u!,u?). Since v is perpendicular to p.1, (3.13) implies

Nij = P,ij -V = hij.

On the other hand, taking inner product with p j, we have

2 2
(3.22) Dyij "Dk = Z Api-pr = Zglk/llij~
=1 =1

Here, by the Leibniz rule, the left-hand side is computed as

Pyij Pk = Di Dk)j—DPi DPkj=Yikj — D D)k + Dk D,
= Gik,j — Gijk + Dk D) i — Diij - Dok = Gikj — Gije + Gjk,i — Dij - P,k

and thus, p;j -pr = %(gik,j + 9rji — 9ij,k)- Then (3.22) turns to be

2

1

i(gik,j + Gkji — Gij k) = Dij - Dk = Zglk/léj'
1=1

Multiplying ¢** on the both side of the equality above, and summing up it over k¥ = 1 and 2, we
have

2 2 2 2
ZgSk(gik,j + Grji = Gijk) = Z ZQSkglkAﬁj = Z ZQSkgklAi‘j = Z 5L = A3
k=1 =1

k=11=1 =1 s=1

N |

This implies that Aéj coincides with the Christoffel symbol (3.18). Summing up, the Gauss formula
(3.19) is proven.
Next, we prove the Weingarten formula: Since v - v = 1, v; is perpendicular to v. Hence we

can write )
vi=Y B,

=1

and then by (3.21),
2 2
~hij=pi-v;=Y Blpi-pi=> guB}.
=1 =1

So,

2 2 2 2
RN TIED 3 SRR SYI
=1 s=1

=1 s=1
proving (3.20). O

For later use, we prepare the following formulas on the Christoffel symbols:

Proposition 3.3. The Christoffel symbol in (3.18) satisfies

k _ ik
(3.23) rk=rk
2
(3.24) Gij .k = Z(gljpilk + gilrlij)v
=1
dg

2
(3.25) St 20 T}, (¢ :=det I = grigas — gia),
=1

where the indices i, j and k run over 1 and 2.
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Proof. Since

=I\p1+ I p2+hyy and pji=TI}p1+ips+ hjv,

(3.23) follows.
The second formula (3.24) is obtained as

Gij k = (pz' 'Pj) =Pk "Dt DPiDjk

2 2
(Z Oh(pi-pg) + hae(v - P,g)) + (ZF};@(P@ )+ hi(p,i - V))
=1

=1

Mw

(gl]Flk + ngij)

1

Finally, differentiating ¢ = det T ,

dg =97 2
B = B ~ ) L o
Bl tr <I 8ui> = (det I)tr (I I,Z) g E 9" Gimi

l,m=1

2

=g Z g ngFlz+ng zm = Zél‘l—‘lz—’_ Z 5;71]_‘18771

l,m,s=1 l,s=1 m,s=1
2 2
PSS o BE ot
=1 m=1
where I = (det 1)1 ! is the cofactor matrix of 1. Thus we have (3.25). O

3.3 Orthonormal frames

The Gauss and Weingarten formulas (Theorem 3.2) are the fundamental equations which express
how the fundamental forms determine shape of surfaces. In this section, another formulation of
Gauss-Weingarten formulas using orthonormal frames. In this subsection, we write the coordinate
system of R? by (u,v), again.

Adapted frames

Let p: U — R? be an immersion of a domain U C R? into the Euclidean 3-space, and take the
unit normal vector field v: U — R? of p. For a simplicity, we assume that v is compatible to the
canonical orientation of U, that is, det F = det(py, py,v) > 0, where F is the Gauss frame.

Definition 3.4. A C*-map £ = (ej,es,e3) : U — SO(3) is called an adapted (orthonormal)
frame of the surface p: U — R? if e3 coincides with the unit normal vector field v.

Example 3.5. Let p: R? D U > (u,v) — p(u,v) € R? be an immersion and let v be the unit
normal vector field of p which is compatible to the orientation of U. We let

1 1
0 0
e; = s e, .= Ep, — Fpy),
LT VEY 2= JEVEG = e )
where E, F, G are the coefficients of the first fundamental form as in (3.7). Since v := €3 is

perpendicular to both p, and p,, % := (€Y, €3, €9) is an adapted frame of p. Remark that {e?,e9}
is an orthonormal frame of the orthogonal complement of v (that is, the tangent plane) obtained
by applying the Gram-Schmidt orthogonalization to (p,py)-
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Gauge transformations

An adapted frame has an ambiguity of a rotation of the frame (e, es) of the tangent plane. In
fact, for an arbitrary function ¢: U — R,

cos¢p —sing 0O
(3.26) £ =ER, R:=Ry=|sing cos¢p 0
0 0 1

is another adapted frame. Conversely, we have the following:

Lemma 3.6. Let & and & be adapted frames of the surface p: U — R3, where U is a simply
connected domain. Then there exists a function ¢: U — R satisfying (3.26).

Proof. Since € and € are valued in SO(3) with common third columns, an SO(3)-valued function
R := £7'€ is expressed as

a —-b 0
R=1{b a of=(% 9, Ro=(% 7%).v=s002)),
0 o0 1 0 1 b a

where a and b are C°°-functions defined on U. Fix a point (ug,vy) € U. Since Ry € SO(2),
a’® + b2 = 1, and then there exists an angle ¢ such that

(327) CL(U(),’U()) = COSd)Q, b(UO,’Uo) = Singf)o.
Consider a differential 1-form
w:= —bda+ adb= (—ba, + ab,) du + (—ba, + ab,) dv.

Then
dw = ((—bav + aby)y — (—bay, + abu)v) du A dv = 2(ayb, — byay,) du A dv.

On the other hand, differentiating a® + b> = 1, it holds that
0 =ada+ bdb = (aay + bb,)du + (aa, + bb,)dv, that is, aa, = —bb,, aa, = —bb,.
Hence

adw = 2(aayb, — byaa,) du A dv = 2(—bb, b, + byaa,) du A dv = 0,
bdw = 2(a,bb, — bbyay,) du A dv = 2(—ayaa, + aaya,)du A dv =0,

which implies that dw = 0 because (a,b) # (0,0). Then by the Poincaré lemma (Theorem 2.6),
there exists the unique function ¢: U — R such that

(3.28) d¢ = w = —bda + adb, @ (ug, vo) = ¢o.
Set @ := cos ¢ and b := sin ¢. Then by (3.28), both Ry and

Ro = (cos¢ —singb)

sin ¢ cos ¢

satisfies the same systems of differential equations

_ 0 _¢u _ 0 _d)v
Xu_X(¢u O), Xq,_X<¢U O)

with the same initial condition. Hence Ry = RO, which is the conclusion. O

A transformation of adapted frames as in Lemma 3.6 is called a gauge transformation.
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Gauss-Weingarten formulas

Let £ = (ej, €3, €3) be an adapted frame of a surface p: U — R3. Since e; and e, are perpendicular
to v, there exists a matrix

~ 1 1 ~
(3.29) I = (?% zé) such that (Pu,pv) = (€1,€2) 1.

On the other hand, since e3 - e3 = 1, the derivatives of e3 are perpendicular to ez. Then there
exists a matrix II such that

~ 1 1 ~
(3.30) i = (Z; Z;) such that  ((€3)u. (€3)s) = —(e1, e2) 1.
1 2

Lemma 3.7. The Gaussian curvature K satisfy

K det f{
det [

Proof. The first and second fundamental matrices are

P (&) Gar) ="1 (:82) ercean I = (D)1,

Py
7 tpu ty tel F LN
m=-1, (Vu,v0) = I |, (e1,ex) I =(1)1II.
Pv €2
Hence we have the conclusion by (3.11). O

Proposition 3.8. There exist functions «, 3 defined on U such that

0 —a —h! 0 -8 —hi
(331) E,=E0, & ,=EA Q=[a 0 -m2|, A= 0 -n2
hton2 0 hL o h: 0

Proof. Since & is SO(3)-valued, 2 := £71&, and A := £71E, are skew-symmetric matrices. The
third columns of {2 and A are nothing but the definition of the matrix II. O

Definition 3.9. The differential form
w=adu+ Bdv
is called the connection form with respect to the adapted frame.

Lemma 3.10. The connection forms p and i of the adapted frames € and & as in Lemma 3.6
satisfy

= p+do.
Proof. Let 2 := E-1&, and A := £E-1&,. Then

Q=EYEWR+ER,) =E " (ENR+ER,) =E 'E(RT'QR+R'R,) = RT'QR+ R 'R,,

and A = R~IAR + R~'R, hold. Then the conclusion follows. O
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Ezxercises

3-1 Assume the first and second fundamental forms of the surface p(u', u?) are given in the form
2 . .
ds® = €* ((du')” + (du?)?), I =Y hydu'du,
ij=1
where o is a smooth function in (u',u?). Compute the matrices 2; (j = 1,2) in (3.17).
3-2  Assume the first and second fundamental forms of the surface p(u!, u?) are given in the form
ds® = (du)? + 2 cos 0 du' du® + (du?)?, IT = 2sin 0 du' du?,

where 6 is a smooth function in (u',u?). Compute the matrices §2; (j = 1,2) in (3.17).



