3 A review of surface theory

In this section, we review the classical surface theory in the Euclidean 3-space. The textbook [UY17] is one of the fundamental references of this material.

3.1 Preliminaries

Euclidean space Let \mathbb{R}^3 be the Euclidean 3-space, that is, the 3-dimensional affine space \mathbb{R}^3 endowed with the Euclidean *inner product* "·", where⁷

(3.1)
$$\boldsymbol{x} \cdot \boldsymbol{y} := {}^{t}\boldsymbol{x}\boldsymbol{y} = x^{1}y^{1} + x^{2}y^{2} + x^{3}y^{3}, \quad \text{where} \quad \boldsymbol{x} = \begin{pmatrix} x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} y^{1} \\ y^{2} \\ y^{3} \end{pmatrix} \in \mathbb{R}^{3}.$$

The Euclidean norm | | and the Euclidean distance d(,) is defined as

(3.2)
$$|\boldsymbol{x}| := \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}} = \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2}, \quad d(\boldsymbol{x}, \boldsymbol{y}) = |\boldsymbol{y} - \boldsymbol{x}| \quad (\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3).$$

A map $f: \mathbb{R}^3 \to \mathbb{R}^3$ is called an *isometry* if it preserves the distance function $d: d(f(\boldsymbol{x}), f(\boldsymbol{y})) = d(\boldsymbol{x}, \boldsymbol{y}) \ (\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3).$

Fact 3.1. A map $f : \mathbb{R}^3 \to \mathbb{R}^3$ is an isometry if and only if f is in a form

(3.3)
$$f(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b} \qquad (A \in \mathcal{O}(3), \boldsymbol{b} \in \mathbb{R}^3),$$

where O(3) is the set of 3×3 orthogonal matrices.

An isometry in (3.3) is said to be *orientation preserving* if $A \in SO(3)$, that is, A is an orthogonal matrix with det A = 1.

The outer product or vector product of $\boldsymbol{x} \times \boldsymbol{y}$ of $\boldsymbol{x}, \, \boldsymbol{y} \in \mathbb{R}^3$ is defined by

(3.4)
$$\det(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = (\boldsymbol{x} \times \boldsymbol{y}) \cdot \boldsymbol{z}.$$

Immersed surfaces Let $U \subset \mathbb{R}^2$ be a domain of the *uv*-plane \mathbb{R}^2 . A C^{∞} -map $p: U \to \mathbb{R}^3$ is called an *immersion* or a *parametrization of a regular surface* if

(3.5)
$$p_u(u,v) := \frac{\partial p}{\partial u}(u,v), \text{ and } p_v(u,v) := \frac{\partial p}{\partial v}(u,v)$$
 are linearly independent

at each point $(u, v) \in U$. The unit normal vector field to an immersion $p: U \to \mathbb{R}^3$ is a C^{∞} -map $\nu: U \to \mathbb{R}^3$ satisfying

(3.6)
$$\nu \cdot p_u = \nu \cdot p_v = 0, \quad |\nu| = 1$$

for each point on U.

The first fundamental form ds^2 is defined by

(3.7)
$$ds^{2} := dp \cdot dp = E \, du^{2} + 2F \, du \, dv + G \, dv^{2},$$
$$(E := p_{u} \cdot p_{u}, F := p_{u} \cdot p_{v} = p_{v} \cdot p_{u}, G := p_{v} \cdot p_{v}),$$

where the subscript u (resp. v) means the partial derivative with respect to the variable u (resp. v). The three functions E, F and G defined on U are called the coefficients of the first fundamental form.

^{10.} May, 2022. Revised: 17. May, 2022

⁷According to a traditional manner, the indices of coordinate functions are written as superscripts.

Similarly, taking account of the identity

$$\nu_u \cdot p_v = (\nu \cdot p_v)_u - \nu \cdot p_{vu} = 0 - \nu \cdot p_{vu} = -\nu \cdot p_{uv} = \nu_v \cdot p_{uv}$$

we define the second fundamental form as

(3.8)
$$II := -d\nu \cdot dp = L \, du^2 + 2M \, du \, dv + N \, dv^2, (L := -p_u \cdot \nu_u, M := -p_u \cdot \nu_v = -p_v \cdot \nu_u, N := -p_v \cdot \nu_v).$$

The symmetric matrices

$$\widehat{I} := \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} {}^{t}p_{u} \\ {}^{t}p_{v} \end{pmatrix} (p_{u}, p_{v}), \qquad \widehat{II} := \begin{pmatrix} L & M \\ M & N \end{pmatrix} = - \begin{pmatrix} {}^{t}p_{u} \\ {}^{t}p_{v} \end{pmatrix} (\nu_{u}, \nu_{v})$$

are called the first and second fundamental matrices, respectively.

By the Cauchy-Schwartz inequality, it holds that

$$EG - F^{2} = |p_{u}|^{2} |p_{v}|^{2} - (p_{u} \cdot p_{v})^{2} > 0,$$

and then the first fundamental matrix \widehat{I} is a regular matrix. The area element of the surface is defined as

(3.9)
$$d\mathcal{A} := \sqrt{EG - F^2} \, du \, dv.$$

In fact, the area of a part of surface corresponding to a relatively compact domain $\varOmega \subset U$ is computed as

$$\mathcal{A}(\Omega) := \iint_{\overline{\Omega}} d\mathcal{A} = \iint_{\overline{\Omega}} \sqrt{EG - F^2} \, du \, dv.$$

Since \widehat{I} is regular, the matrix

(3.10)
$$A := \widehat{I}^{-1} \widehat{II} = \begin{pmatrix} A_1^1 & A_2^1 \\ A_1^2 & A_2^2 \end{pmatrix},$$

called the Weingarten matrix, is defined. It is known that the eigenvalues λ_1 and λ_2 of A are real numbers, and called the *principal curvatures*. The Gaussian curvature K and the mean curvature H are defined as

(3.11)
$$K := \lambda_1 \lambda_2 = \det A = \frac{\det \widehat{H}}{\det \widehat{I}}, \qquad H := \frac{1}{2}(\lambda_1 + \lambda_2) = \frac{1}{2}\operatorname{tr} A.$$

3.2 Gauss frames

To simplify computations, and for a future generalization for higher dimensional case, we switch the notation here to the "index" style. Write the coordinate system of $U \subset \mathbb{R}^2$ by (u^1, u^2) instead of (u, v), and denote

$$f_{,1} = \frac{\partial f}{\partial u^1}, \qquad f_{,2} = \frac{\partial f}{\partial u^2}$$

that is, the subscript number following a comma means the partial derivative with respect to the corresponding variable. Using these notations, the first fundamental form is expressed as

(3.12)
$$ds^{2} = dp \cdot dp = \sum_{i,j=1}^{2} g_{ij} \, du^{i} \, du^{j}, \qquad (g_{ij} := p_{,i} \cdot p_{,j}).$$

Similarly, the second fundamental form is written as

(3.13)
$$II = -dp \cdot d\nu = \sum_{i,j=1}^{2} h_{ij} \, du^i \, du^j, \qquad (h_{ij} := -p_{,i} \cdot \nu_{,j} = -p_{,j} \cdot \nu_{,i} = p_{,ij} \cdot \nu).$$

Since the first fundamental matrix $\hat{I} = (g_{ij})_{i,j=1,2}$ has positive determinant, its inverse matrix exists. We denote the component of the inverse by $\hat{I}^{-1} = (g^{ij})$, using superscripts instead of subscripts. By definition, it hold that

(3.14)
$$g^{ij} = g^{ji} \quad \text{and} \quad \sum_{k=1}^{2} g^{ik} g_{kj} = \delta^{i}_{j} = \begin{cases} 1 & (i=j) \\ 0 & (\text{otherwise}) \end{cases}$$

where δ stands for *Kronecker's delta symbol*. Using these, the Weingarten matrix A as in (3.10) and the Gaussian curvature K in (3.11) are expressed as

(3.15)
$$A = (A_i^j), \qquad A_i^j = \sum_{k=1}^2 g^{jk} h_{ki}, \qquad K = \det A = \frac{\det(h_{ij})}{\det(g_{ij})}$$

Since p is an immersion, $\{p_{,1}(u^1, u^2), p_{,2}(u^1, u^2), \nu(u^1, u^2)\}$ are linearly independent for each point $(u^1, u^2) \in U$. Hence we obtain a smooth map

(3.16)
$$\mathcal{F}: U \ni (u^1, u^2) \mapsto \left(p_{,1}(u^1, u^2), p_{,2}(u^1, u^2), \nu(u^1, u^2) \right) \in \mathrm{GL}(3, \mathbb{R}),$$

where $\operatorname{GL}(3,\mathbb{R})$ is the set of 3×3 regular matrices with real components. The map \mathcal{F} is called the *Gauss frame* of the surface p.

Theorem 3.2. The Gauss frame \mathcal{F} satisfies

(3.17)
$$\frac{\partial \mathcal{F}}{\partial u^j} = \mathcal{F}\Omega_j \qquad \left(\Omega_j := \begin{pmatrix} \Gamma_{1j}^1 & \Gamma_{2j}^1 & -A_j^1 \\ \Gamma_{2j}^2 & \Gamma_{2j}^2 & -A_j^2 \\ h_{1j} & h_{2j} & 0 \end{pmatrix}\right) \qquad (j=1,2),$$

where h_{ij} 's are the coefficients of the second fundamental form, A_j^i 's are the components of the Weingarten matrix, and

(3.18)
$$\Gamma_{ij}^k := \frac{1}{2} \sum_{l=1}^2 g^{kl} (g_{il,j} + g_{lj,i} - g_{ij,l}), \qquad (i, j, k = 1, 2)$$

The functions Γ_{ij}^k in (3.18) are called the *Christoffel symbols*, and the equation (3.17) is called the *Gauss-Weingarten formula*. By decomposing \mathcal{F} into columns, the Gauss-Weingarten formula is restated as

$$(3.19) p_{,ij} = \left(\sum_{l=1}^{2} \Gamma_{ij}^l p_{,l}\right) + h_{ij}\nu$$

(3.20)
$$\nu_{,j} = -\sum_{l=1}^{2} A_{j}^{l} p_{,l}.$$

The equality (3.19) and (3.20) are called the Gauss formula and Weingarten formula, respectively.

Proof of Theorem 3.2. Since $\{p_{,1}, p_{,2}, \nu\}$ is a basis of \mathbb{R}^3 at each point $(u^1, u^2) \in U$, the second derivative $p_{,ij}$ is expressed as a linear combination of $\{p_{,1}, p_{,2}, \nu\}$:

(3.21)
$$p_{,ij} = \Lambda^1_{ij} p_{,1} + \Lambda^2_{ij} p_{,2} + \eta_{ij} \nu = \left(\sum_{l=1}^2 \Lambda^l_{ij} p_{,l}\right) + \eta_{ij} \nu,$$

where Λ_{ij}^l and η_{ij} are smooth functions in (u^1, u^2) . Since ν is perpendicular to $p_{,l}$, (3.13) implies

$$\eta_{ij} = p_{,ij} \cdot \nu = h_{ij}$$

On the other hand, taking inner product with $p_{,k}$, we have

(3.22)
$$p_{,ij} \cdot p_{,k} = \sum_{l=1}^{2} \Lambda_{ij}^{l} p_{,l} \cdot p_{,k} = \sum_{l=1}^{2} g_{lk} \Lambda_{ij}^{l}$$

Here, by the Leibniz rule, the left-hand side is computed as

$$\begin{aligned} p_{,ij} \cdot p_{,k} &= (p_{,i} \cdot p_{,k})_{,j} - p_{,i} \cdot p_{,kj} = g_{ik,j} - (p_{,i} \cdot p_{,j})_{,k} + p_{,ik} \cdot p_{,j} \\ &= g_{ik,j} - g_{ij,k} + (p_{,k} \cdot p_{,j})_{,i} - p_{,ij} \cdot p_{,k} = g_{ik,j} - g_{ij,k} + g_{jk,i} - p_{,ij} \cdot p_{,k}, \end{aligned}$$

and thus, $p_{,ij}\cdot p_{,k}=\frac{1}{2}(g_{ik,j}+g_{kj,i}-g_{ij,k}).$ Then (3.22) turns to be

$$\frac{1}{2}(g_{ik,j} + g_{kj,i} - g_{ij,k}) = p_{,ij} \cdot p_{,k} = \sum_{l=1}^{2} g_{lk} \Lambda_{ij}^{l}$$

Multiplying g^{sk} on the both side of the equality above, and summing up it over k = 1 and 2, we have

$$\frac{1}{2}\sum_{k=1}^{2}g^{sk}(g_{ik,j}+g_{kj,i}-g_{ij,k}) = \sum_{k=1}^{2}\sum_{l=1}^{2}g^{sk}g_{lk}\Lambda_{ij}^{l} = \sum_{l=1}^{2}\sum_{s=1}^{2}g^{sk}g_{kl}\Lambda_{ij}^{l} = \sum_{l=1}^{2}\delta_{l}^{s}\Lambda_{ij}^{l} = \Lambda_{ij}^{s}.$$

This implies that Λ_{ij}^l coincides with the Christoffel symbol (3.18). Summing up, the Gauss formula (3.19) is proven.

Next, we prove the Weingarten formula: Since $\nu \cdot \nu = 1$, $\nu_{,j}$ is perpendicular to ν . Hence we can write

$$\nu_{,j} = \sum_{l=1}^2 B_j^l p_{,l},$$

and then by (3.21),

$$-h_{ij} = p_{,i} \cdot \nu_{,j} = \sum_{l=1}^{2} B_{j}^{l} p_{,l} \cdot p_{,i} = \sum_{l=1}^{2} g_{il} B_{j}^{l}.$$

So,

$$B_j^k = \sum_{l=1}^2 \delta_l^k B_j^l = \sum_{l=1}^2 \sum_{s=1}^2 g^{ks} g_{sl} B_j^l = -\sum_{s=1}^2 g^{ks} h_{js} = -A_j^k$$

proving (3.20).

For later use, we prepare the following formulas on the Christoffel symbols:

Proposition 3.3. The Christoffel symbol in (3.18) satisfies

(3.23)
$$\Gamma_{ij}^k = \Gamma_{ji}^k$$

(3.24)
$$g_{ij,k} = \sum_{l=1}^{2} (g_{lj} \Gamma_{ik}^{l} + g_{il} \Gamma_{kj}^{l}),$$

(3.25)
$$\frac{\partial g}{\partial u^i} = 2g \sum_{l=1}^2 \Gamma_{il}^l, \qquad (g := \det \widehat{I} = g_{11}g_{22} - g_{12}^2),$$

where the indices i, j and k run over 1 and 2.

Proof. Since

$$p_{,ij} = \Gamma_{ij}^1 p_{,1} + \Gamma_{ij}^2 p_{,2} + h_{ij} \nu$$
 and $p_{,ji} = \Gamma_{ji}^1 p_{,1} + \Gamma_{ji}^2 p_{,2} + h_{ji} \nu$,

(3.23) follows.

The second formula (3.24) is obtained as

$$g_{ij,k} = (p_{,i} \cdot p_{,j})_{,k} = p_{,ik} \cdot p_{,j} + p_{,i} \cdot p_{,jk}$$

= $\left(\sum_{l=1}^{2} \Gamma_{ik}^{l}(p_{,l} \cdot p_{,j}) + h_{ik}(\nu \cdot p_{,j})\right) + \left(\sum_{l=1}^{2} \Gamma_{jk}^{l}(p_{,i} \cdot p_{,l}) + h_{jk}(p_{,i} \cdot \nu)\right)$
= $\sum_{l=1}^{2} \left(g_{lj}\Gamma_{ik}^{l} + g_{il}\Gamma_{kj}^{l}\right).$

Finally, differentiating $g = \det \widehat{I}$,

$$\begin{split} \frac{\partial g}{\partial u^{i}} &= \operatorname{tr}\left(\widetilde{\widehat{I}}\frac{\partial \widehat{I}}{\partial u^{i}}\right) = \left(\det \,\widehat{I}\,\right)\operatorname{tr}\left(\widehat{I}^{-1}\,\widehat{I}_{,i}\right) = g\sum_{l,m=1}^{2}g^{lm}g_{lm,i}\\ &= g\sum_{l,m,s=1}^{2}g^{lm}\left(g_{ms}\Gamma_{li}^{s} + g_{ls}\Gamma_{im}^{s}\right) = g\left(\sum_{l,s=1}^{2}\delta_{s}^{l}\Gamma_{li}^{s} + \sum_{m,s=1}^{2}\delta_{s}^{m}\Gamma_{im}^{s}\right)\\ &= g\left(\sum_{l=1}^{2}\Gamma_{li}^{l} + \sum_{m=1}^{2}\Gamma_{im}^{m}\right) = 2g\sum_{l=1}^{2}\Gamma_{ll}^{l}, \end{split}$$

where $\tilde{\hat{I}} = (\det \hat{I}) \hat{I}^{-1}$ is the cofactor matrix of \hat{I} . Thus we have (3.25).

3.3 Orthonormal frames

The Gauss and Weingarten formulas (Theorem 3.2) are the fundamental equations which express how the fundamental forms determine shape of surfaces. In this section, another formulation of Gauss-Weingarten formulas using orthonormal frames. In this subsection, we write the coordinate system of \mathbb{R}^2 by (u, v), again.

Adapted frames

Let $p: U \to \mathbb{R}^3$ be an immersion of a domain $U \subset \mathbb{R}^2$ into the Euclidean 3-space, and take the unit normal vector field $\nu: U \to \mathbb{R}^3$ of p. For a simplicity, we assume that ν is compatible to the canonical orientation of U, that is, det $\mathcal{F} = \det(p_u, p_v, \nu) > 0$, where \mathcal{F} is the Gauss frame.

Definition 3.4. A C^{∞} -map $\mathcal{E} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) : U \to SO(3)$ is called an *adapted* (orthonormal) frame of the surface $p: U \to \mathbb{R}^3$ if \mathbf{e}_3 coincides with the unit normal vector field ν .

Example 3.5. Let $p: \mathbb{R}^2 \supset U \ni (u, v) \mapsto p(u, v) \in \mathbb{R}^3$ be an immersion and let ν be the unit normal vector field of p which is compatible to the orientation of U. We let

$$e_1^0 := \frac{1}{\sqrt{E}} p_u, \qquad e_2^0 := \frac{1}{\sqrt{E}\sqrt{EG - F^2}} (Ep_v - Fp_u),$$

where E, F, G are the coefficients of the first fundamental form as in (3.7). Since $\nu := e_3^0$ is perpendicular to both p_u and p_v , $\mathcal{E}^0 := (e_1^0, e_2^0, e_3^0)$ is an adapted frame of p. Remark that $\{e_1^0, e_2^0\}$ is an orthonormal frame of the orthogonal complement of ν (that is, the tangent plane) obtained by applying the Gram-Schmidt orthogonalization to (p_u, p_v) .

Gauge transformations

An adapted frame has an ambiguity of a rotation of the frame (e_1, e_2) of the tangent plane. In fact, for an arbitrary function $\phi: U \to \mathbb{R}$,

(3.26)
$$\widetilde{\mathcal{E}} = \mathcal{E}R, \qquad R := R_{\phi} = \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

is another adapted frame. Conversely, we have the following:

Lemma 3.6. Let \mathcal{E} and $\widetilde{\mathcal{E}}$ be adapted frames of the surface $p: U \to \mathbb{R}^3$, where U is a simply connected domain. Then there exists a function $\phi: U \to \mathbb{R}$ satisfying (3.26).

Proof. Since \mathcal{E} and $\widetilde{\mathcal{E}}$ are valued in SO(3) with common third columns, an SO(3)-valued function $R := \mathcal{E}^{-1}\widetilde{\mathcal{E}}$ is expressed as

$$R = \begin{pmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_0 & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix}, \qquad \begin{pmatrix} R_0 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : U \to \mathrm{SO}(2) \end{pmatrix},$$

where a and b are C^{∞} -functions defined on U. Fix a point $(u_0, v_0) \in U$. Since $R_0 \in SO(2)$, $a^2 + b^2 = 1$, and then there exists an angle ϕ_0 such that

(3.27)
$$a(u_0, v_0) = \cos \phi_0, \quad b(u_0, v_0) = \sin \phi_0.$$

Consider a differential 1-form

$$\omega := -b\,da + a\,db = (-ba_u + ab_u)\,du + (-ba_v + ab_v)\,dv.$$

Then

$$d\omega = \left((-ba_v + ab_v)_u - (-ba_u + ab_u)_v \right) du \wedge dv = 2(a_u b_v - b_u a_v) du \wedge dv.$$

On the other hand, differentiating $a^2 + b^2 = 1$, it holds that

$$0 = a da + b db = (aa_u + bb_u)du + (aa_v + bb_v)dv, \quad \text{that is,} \quad aa_u = -bb_u, \quad aa_v = -bb_v.$$

Hence

$$ad\omega = 2(aa_ub_v - b_uaa_v) du \wedge dv = 2(-bb_ub_v + b_uaa_v) du \wedge dv = 0$$

$$bd\omega = 2(a_ubb_v - bb_ua_v) du \wedge dv = 2(-a_uaa_v + aa_ua_v) du \wedge dv = 0$$

which implies that $d\omega = 0$ because $(a, b) \neq (0, 0)$. Then by the Poincaré lemma (Theorem 2.6), there exists the unique function $\phi: U \to \mathbb{R}$ such that

(3.28)
$$d\phi = \omega = -b \, da + a \, db, \qquad \phi(u_0, v_0) = \phi_0.$$

Set $\tilde{a} := \cos \phi$ and $\tilde{b} := \sin \phi$. Then by (3.28), both R_0 and

$$\hat{R}_0 = \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix}$$

satisfies the same systems of differential equations

$$X_u = X \begin{pmatrix} 0 & -\phi_u \\ \phi_u & 0 \end{pmatrix}, \qquad X_v = X \begin{pmatrix} 0 & -\phi_v \\ \phi_v & 0 \end{pmatrix}$$

with the same initial condition. Hence $R_0 = \hat{R}_0$, which is the conclusion.

A transformation of adapted frames as in Lemma 3.6 is called a gauge transformation.

Gauss-Weingarten formulas

Let $\mathcal{E} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ be an adapted frame of a surface $p: U \to \mathbb{R}^3$. Since \mathbf{e}_1 and \mathbf{e}_2 are perpendicular to ν , there exists a matrix

(3.29)
$$\check{I} = \begin{pmatrix} g_1^1 & g_2^1 \\ g_1^2 & g_2^2 \end{pmatrix} \quad \text{such that} \quad (p_u, p_v) = (\boldsymbol{e}_1, \boldsymbol{e}_2) \,\check{I} \,.$$

On the other hand, since $e_3 \cdot e_3 = 1$, the derivatives of e_3 are perpendicular to e_3 . Then there exists a matrix \check{I} such that

(3.30)
$$\check{I} = \begin{pmatrix} h_1^1 & h_2^1 \\ h_1^2 & h_2^2 \end{pmatrix} \quad \text{such that} \quad \left((e_3)_u, (e_3)_v \right) = -(e_1, e_2) \,\check{I} \,.$$

Lemma 3.7. The Gaussian curvature K satisfy

$$K = \frac{\det \check{H}}{\det \check{I}}$$

Proof. The first and second fundamental matrices are

$$\widehat{I} = \begin{pmatrix} {}^{t}p_{u} \\ {}^{t}p_{v} \end{pmatrix} (p_{u}, p_{v}) = {}^{t} \check{I} \begin{pmatrix} {}^{t}\boldsymbol{e}_{1} \\ {}^{t}\boldsymbol{e}_{2} \end{pmatrix} (\boldsymbol{e}_{1}, \boldsymbol{e}_{2}) \check{I} = ({}^{t} \check{I}) \check{I},$$
$$\widehat{II} = -\begin{pmatrix} {}^{t}p_{u} \\ {}^{t}p_{v} \end{pmatrix} (\nu_{u}, \nu_{v}) = {}^{t} \check{I} \begin{pmatrix} {}^{t}\boldsymbol{e}_{1} \\ {}^{t}\boldsymbol{e}_{2} \end{pmatrix} (\boldsymbol{e}_{1}, \boldsymbol{e}_{2}) \check{II} = ({}^{t} \check{I}) \check{II}.$$

Hence we have the conclusion by (3.11).

Proposition 3.8. There exist functions α , β defined on U such that

(3.31)
$$\mathcal{E}_u = \mathcal{E}\Omega, \quad \mathcal{E}_v = \mathcal{E}\Lambda \quad \left(\Omega := \begin{pmatrix} 0 & -\alpha & -h_1^1 \\ \alpha & 0 & -h_1^2 \\ h_1^1 & h_1^2 & 0 \end{pmatrix}, \quad \Lambda := \begin{pmatrix} 0 & -\beta & -h_2^1 \\ \beta & 0 & -h_2^2 \\ h_2^1 & h_2^2 & 0 \end{pmatrix} \right).$$

Proof. Since \mathcal{E} is SO(3)-valued, $\Omega := \mathcal{E}^{-1}\mathcal{E}_u$ and $\Lambda := \mathcal{E}^{-1}\mathcal{E}_v$ are skew-symmetric matrices. The third columns of Ω and Λ are nothing but the definition of the matrix \check{H} .

Definition 3.9. The differential form

$$\mu := \alpha \, du + \beta \, dv$$

is called the *connection form* with respect to the adapted frame.

Lemma 3.10. The connection forms μ and $\tilde{\mu}$ of the adapted frames \mathcal{E} and $\tilde{\mathcal{E}}$ as in Lemma 3.6 satisfy

$$\tilde{\mu} = \mu + d\phi.$$

Proof. Let $\widetilde{\Omega} := \widetilde{\mathcal{E}}^{-1} \widetilde{\mathcal{E}}_u$ and $\widetilde{\Lambda} := \widetilde{\mathcal{E}}^{-1} \widetilde{\mathcal{E}}_v$. Then

$$\widetilde{\Omega} = \widetilde{\mathcal{E}}^{-1}(\mathcal{E}_u R + \mathcal{E}R_u) = \widetilde{\mathcal{E}}^{-1}(\mathcal{E}\Omega R + \mathcal{E}R_u) = \widetilde{\mathcal{E}}^{-1}\widetilde{\mathcal{E}}(R^{-1}\Omega R + R^{-1}R_u) = R^{-1}\Omega R + R^{-1}R_u,$$

and $\widetilde{A} = R^{-1}AR + R^{-1}R_u$ hold. Then the conclusion follows.

Exercises

3-1 Assume the first and second fundamental forms of the surface $p(u^1, u^2)$ are given in the form

$$ds^{2} = e^{2\sigma}((du^{1})^{2} + (du^{2})^{2}), \qquad II = \sum_{i,j=1}^{2} h_{ij} \, du^{i} \, du^{j},$$

where σ is a smooth function in (u^1, u^2) . Compute the matrices Ω_j (j = 1, 2) in (3.17).

3-2 Assume the first and second fundamental forms of the surface $p(u^1, u^2)$ are given in the form

$$ds^{2} = (du^{1})^{2} + 2\cos\theta \, du^{1} \, du^{2} + (du^{2})^{2}, \qquad II = 2\sin\theta \, du^{1} \, du^{2}$$

where θ is a smooth function in (u^1, u^2) . Compute the matrices Ω_j (j = 1, 2) in (3.17).