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3 A review of surface theory

In this section, we review the classical surface theory in the Euclidean 3-space. The textbook
[UY17] is one of the fundamental references of this material.

3.1 Preliminaries

Euclidean space Let R3 be the Euclidean 3-space, that is, the 3-dimensional affine space R3

endowed with the Euclidean inner product “·”, where7

(3.1) x · y := txy = x1y1 + x2y2 + x3y3, where x =

x1

x2

x3

 , y =

y1

y2

y3

 ∈ R3.

The Euclidean norm | | and the Euclidean distance d( , ) is defined as

(3.2) |x| :=
√
x · x =

√
(x1)2 + (x2)2 + (x3)2, d(x,y) = |y − x| (x,y ∈ R3).

A map f : R3 → R3 is called an isometry if it preserves the distance function d: d
(
f(x), f(y)

)
=

d(x,y) (x, y ∈ R3).

Fact 3.1. A map f : R3 → R3 is an isometry if and only if f is in a form

(3.3) f(x) = Ax+ b (A ∈ O(3), b ∈ R3),

where O(3) is the set of 3× 3 orthogonal matrices.

An isometry in (3.3) is said to be orientation preserving if A ∈ SO(3), that is, A is an orthogonal
matrix with detA = 1.

The outer product or vector product of x× y of x, y ∈ R3 is defined by

(3.4) det(x,y, z) = (x× y) · z.

Immersed surfaces Let U ⊂ R2 be a domain of the uv-plane R2. A C∞-map p : U → R3 is
called an immersion or a parametrization of a regular surface if

(3.5) pu(u, v) :=
∂p

∂u
(u, v), and pv(u, v) :=

∂p

∂v
(u, v) are linearly independent

at each point (u, v) ∈ U . The unit normal vector field to an immersion p : U → R3 is a C∞-map
ν : U → R3 satisfying

(3.6) ν · pu = ν · pv = 0, |ν| = 1

for each point on U .
The first fundamental form ds2 is defined by

(3.7) ds2 := dp · dp = E du2 + 2F du dv +Gdv2,(
E := pu · pu, F := pu · pv = pv · pu, G := pv · pv

)
,

where the subscript u (resp. v) means the partial derivative with respect to the variable u (resp. v).
The three functions E, F and G defined on U are called the coefficients of the first fundamental
form.
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7According to a traditional manner, the indices of coordinate functions are written as superscripts.
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Similarly, taking account of the identity

νu · pv = (ν · pv)u − ν · pvu = 0− ν · pvu = −ν · puv = νv · pu,

we define the second fundamental form as

(3.8) II := −dν · dp = Ldu2 + 2M dudv +N dv2,(
L := −pu · νu,M := −pu · νv = −pv · νu, N := −pv · νv

)
.

The symmetric matrices

Î :=

(
E F
F G

)
=

(
tpu
tpv

)
(pu, pv), ÎI :=

(
L M
M N

)
= −

(
tpu
tpv

)
(νu, νv)

are called the first and second fundamental matrices, respectively.
By the Cauchy-Schwartz inequality, it holds that

EG− F 2 = |pu|2|pv|2 − (pu · pv)2 > 0,

and then the first fundamental matrix Î is a regular matrix. The area element of the surface is
defined as

(3.9) dA :=
√
EG− F 2 du dv.

In fact, the area of a part of surface corresponding to a relatively compact domain Ω ⊂ U is
computed as

A(Ω) :=

∫∫
Ω

dA =

∫∫
Ω

√
EG− F 2 du dv.

Since Î is regular, the matrix

(3.10) A := Î −1 ÎI =

(
A1

1 A1
2

A2
1 A2

2

)
,

called the Weingarten matrix, is defined. It is known that the eigenvalues λ1 and λ2 of A are real
numbers, and called the principal curvatures. The Gaussian curvature K and the mean curvature
H are defined as

(3.11) K := λ1λ2 = detA =
det ÎI

det Î
, H :=

1

2
(λ1 + λ2) =

1

2
trA.

3.2 Gauss frames

To simplify computations, and for a future generalization for higher dimensional case, we switch
the notation here to the “index” style. Write the coordinate system of U ⊂ R2 by (u1, u2) instead
of (u, v), and denote

f,1 =
∂f

∂u1
, f,2 =

∂f

∂u2
,

that is, the subscript number following a comma means the partial derivative with respect to the
corresponding variable. Using these notations, the first fundamental form is expressed as

(3.12) ds2 = dp · dp =

2∑
i,j=1

gij du
i duj , (gij := p,i · p,j).
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Similarly, the second fundamental form is written as

(3.13) II = −dp · dν =

2∑
i,j=1

hij du
i duj , (hij := −p,i · ν,j = −p,j · ν,i = p,ij · ν).

Since the first fundamental matrix Î = (gij)i,j=1,2 has positive determinant, its inverse matrix
exists. We denote the component of the inverse by Î −1 = (gij), using superscripts instead of
subscripts. By definition, it hold that

(3.14) gij = gji and
2∑

k=1

gikgkj = δij =

{
1 (i = j)

0 (otherwise),

where δ stands for Kronecker’s delta symbol. Using these, the Weingarten matrix A as in (3.10)
and the Gaussian curvature K in (3.11) are expressed as

(3.15) A = (Aj
i ), Aj

i =

2∑
k=1

gjkhki, K = detA =
det(hij)

det(gij)
.

Since p is an immersion, {p,1(u1, u2), p,2(u
1, u2), ν(u1, u2)} are linearly independent for each

point (u1, u2) ∈ U . Hence we obtain a smooth map

(3.16) F : U 3 (u1, u2) 7→
(
p,1(u

1, u2), p,2(u
1, u2), ν(u1, u2)

)
∈ GL(3,R),

where GL(3,R) is the set of 3× 3 regular matrices with real components. The map F is called the
Gauss frame of the surface p.

Theorem 3.2. The Gauss frame F satisfies

(3.17) ∂F
∂uj

= FΩj

Ωj :=

Γ 1
1j Γ 1

2j −A1
j

Γ 2
1j Γ 2

2j −A2
j

h1j h2j 0

 (j = 1, 2),

where hij’s are the coefficients of the second fundamental form, Ai
j’s are the components of the

Weingarten matrix, and

(3.18) Γ k
ij :=

1

2

2∑
l=1

gkl(gil,j + glj,i − gij,l), (i, j, k = 1, 2)

The functions Γ k
ij in (3.18) are called the Christoffel symbols, and the equation (3.17) is called

the Gauss-Weingarten formula. By decomposing F into columns, the Gauss-Weingarten formula
is restated as

p,ij =

(
2∑

l=1

Γ l
ijp,l

)
+ hijν,(3.19)

ν,j = −
2∑

l=1

Al
jp,l.(3.20)

The equality (3.19) and (3.20) are called the Gauss formula and Weingarten formula, respectively.

Proof of Theorem 3.2. Since {p,1, p,2, ν} is a basis of R3 at each point (u1, u2) ∈ U , the second
derivative p,ij is expressed as a linear combination of {p,1, p,2, ν}:

(3.21) p,ij = Λ1
ijp,1 + Λ2

ijp,2 + ηijν =

(
2∑

l=1

Λl
ijp,l

)
+ ηijν,
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where Λl
ij and ηij are smooth functions in (u1, u2). Since ν is perpendicular to p,l, (3.13) implies

ηij = p,ij · ν = hij .

On the other hand, taking inner product with p,k, we have

(3.22) p,ij · p,k =

2∑
l=1

Λl
ijp,l · p,k =

2∑
l=1

glkΛ
l
ij .

Here, by the Leibniz rule, the left-hand side is computed as

p,ij · p,k = (p,i · p,k),j − p,i · p,kj = gik,j − (p,i · p,j),k + p,ik · p,j
= gik,j − gij,k + (p,k · p,j),i − p,ij · p,k = gik,j − gij,k + gjk,i − p,ij · p,k,

and thus, p,ij · p,k = 1
2 (gik,j + gkj,i − gij,k). Then (3.22) turns to be

1

2
(gik,j + gkj,i − gij,k) = p,ij · p,k =

2∑
l=1

glkΛ
l
ij .

Multiplying gsk on the both side of the equality above, and summing up it over k = 1 and 2, we
have

1

2

2∑
k=1

gsk(gik,j + gkj,i − gij,k) =
2∑

k=1

2∑
l=1

gskglkΛ
l
ij =

2∑
l=1

2∑
s=1

gskgklΛ
l
ij =

2∑
l=1

δsl Λ
l
ij = Λs

ij .

This implies that Λl
ij coincides with the Christoffel symbol (3.18). Summing up, the Gauss formula

(3.19) is proven.
Next, we prove the Weingarten formula: Since ν · ν = 1, ν,j is perpendicular to ν. Hence we

can write

ν,j =

2∑
l=1

Bl
jp,l,

and then by (3.21),

−hij = p,i · ν,j =
2∑

l=1

Bl
jp,l · p,i =

2∑
l=1

gilB
l
j .

So,

Bk
j =

2∑
l=1

δkl B
l
j =

2∑
l=1

2∑
s=1

gksgslB
l
j = −

2∑
s=1

gkshjs = −Ak
j ,

proving (3.20).

For later use, we prepare the following formulas on the Christoffel symbols:

Proposition 3.3. The Christoffel symbol in (3.18) satisfies

Γ k
ij = Γ k

ji(3.23)

gij,k =

2∑
l=1

(gljΓ
l
ik + gilΓ

l
kj),(3.24)

∂g

∂ui
= 2g

2∑
l=1

Γ l
il, (g := det Î = g11g22 − g212),(3.25)

where the indices i, j and k run over 1 and 2.
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Proof. Since

p,ij = Γ 1
ijp,1 + Γ 2

ijp,2 + hijν and p,ji = Γ 1
jip,1 + Γ 2

jip,2 + hjiν,

(3.23) follows.
The second formula (3.24) is obtained as

gij,k =
(
p,i · p,j

)
,k

= p,ik · p,j + p,i · p,jk

=

(
2∑

l=1

Γ l
ik(p,l · p,j) + hik(ν · p,j)

)
+

(
2∑

l=1

Γ l
jk(p,i · p,l) + hjk(p,i · ν)

)

=

2∑
l=1

(
gljΓ

l
ik + gilΓ

l
kj

)
.

Finally, differentiating g = det Î ,

∂g

∂ui
= tr

(˜̂
I
∂ Î

∂ui

)
= (det Î ) tr

(
Î −1 Î ,i

)
= g

2∑
l,m=1

glmglm,i

= g

2∑
l,m,s=1

glm (gmsΓ
s
li + glsΓ

s
im) = g

 2∑
l,s=1

δlsΓ
s
li +

2∑
m,s=1

δms Γ s
im


= g

(
2∑

l=1

Γ l
li +

2∑
m=1

Γm
im

)
= 2g

2∑
l=1

Γ l
il,

where ˜̂I = (det Î ) Î −1 is the cofactor matrix of Î . Thus we have (3.25).

3.3 Orthonormal frames

The Gauss and Weingarten formulas (Theorem 3.2) are the fundamental equations which express
how the fundamental forms determine shape of surfaces. In this section, another formulation of
Gauss-Weingarten formulas using orthonormal frames. In this subsection, we write the coordinate
system of R2 by (u, v), again.

Adapted frames

Let p : U → R3 be an immersion of a domain U ⊂ R2 into the Euclidean 3-space, and take the
unit normal vector field ν : U → R3 of p. For a simplicity, we assume that ν is compatible to the
canonical orientation of U , that is, detF = det(pu, pv, ν) > 0, where F is the Gauss frame.

Definition 3.4. A C∞-map E = (e1, e2, e3) : U → SO(3) is called an adapted (orthonormal)
frame of the surface p : U → R3 if e3 coincides with the unit normal vector field ν.

Example 3.5. Let p : R2 ⊃ U 3 (u, v) 7→ p(u, v) ∈ R3 be an immersion and let ν be the unit
normal vector field of p which is compatible to the orientation of U . We let

e01 :=
1√
E
pu, e02 :=

1√
E
√
EG− F 2

(Epv − Fpu),

where E, F , G are the coefficients of the first fundamental form as in (3.7). Since ν := e03 is
perpendicular to both pu and pv, E0 := (e01, e

0
2, e

0
3) is an adapted frame of p. Remark that {e01, e02}

is an orthonormal frame of the orthogonal complement of ν (that is, the tangent plane) obtained
by applying the Gram-Schmidt orthogonalization to (pu, pv).
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Gauge transformations

An adapted frame has an ambiguity of a rotation of the frame (e1, e2) of the tangent plane. In
fact, for an arbitrary function φ : U → R,

(3.26) Ẽ = ER, R := Rφ =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1


is another adapted frame. Conversely, we have the following:

Lemma 3.6. Let E and Ẽ be adapted frames of the surface p : U → R3, where U is a simply
connected domain. Then there exists a function φ : U → R satisfying (3.26).

Proof. Since E and Ẽ are valued in SO(3) with common third columns, an SO(3)-valued function
R := E−1Ẽ is expressed as

R =

a −b 0
b a 0
0 0 1

 =

(
R0 0
0 1

)
,

(
R0 =

(
a −b
b a

)
: U → SO(2)

)
,

where a and b are C∞-functions defined on U . Fix a point (u0, v0) ∈ U . Since R0 ∈ SO(2),
a2 + b2 = 1, and then there exists an angle φ0 such that

(3.27) a(u0, v0) = cosφ0, b(u0, v0) = sinφ0.

Consider a differential 1-form

ω := −b da+ a db = (−bau + abu) du+ (−bav + abv) dv.

Then
dω =

(
(−bav + abv)u − (−bau + abu)v

)
du ∧ dv = 2(aubv − buav) du ∧ dv.

On the other hand, differentiating a2 + b2 = 1, it holds that

0 = a da+ b db = (aau + bbu)du+ (aav + bbv)dv, that is, aau = −bbu, aav = −bbv.

Hence

adω = 2(aaubv − buaav) du ∧ dv = 2(−bbubv + buaav) du ∧ dv = 0,

bdω = 2(aubbv − bbuav) du ∧ dv = 2(−auaav + aauav)du ∧ dv = 0,

which implies that dω = 0 because (a, b) 6= (0, 0). Then by the Poincaré lemma (Theorem 2.6),
there exists the unique function φ : U → R such that

(3.28) dφ = ω = −b da+ a db, φ(u0, v0) = φ0.

Set ã := cosφ and b̃ := sinφ. Then by (3.28), both R0 and

R̂0 =

(
cosφ − sinφ
sinφ cosφ

)
satisfies the same systems of differential equations

Xu = X

(
0 −φu

φu 0

)
, Xv = X

(
0 −φv

φv 0

)
with the same initial condition. Hence R0 = R̂0, which is the conclusion.

A transformation of adapted frames as in Lemma 3.6 is called a gauge transformation.
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Gauss-Weingarten formulas

Let E = (e1, e2, e3) be an adapted frame of a surface p : U → R3. Since e1 and e2 are perpendicular
to ν, there exists a matrix

(3.29) Ǐ =

(
g11 g12
g21 g22

)
such that (pu, pv) = (e1, e2) Ǐ .

On the other hand, since e3 · e3 = 1, the derivatives of e3 are perpendicular to e3. Then there
exists a matrix ǏI such that

(3.30) ǏI =

(
h1
1 h1

2

h2
1 h2

2

)
such that

(
(e3)u, (e3)v

)
= −(e1, e2) ǏI .

Lemma 3.7. The Gaussian curvature K satisfy

K =
det ǏI

det Ǐ

Proof. The first and second fundamental matrices are

Î =

(
tpu
tpv

)
(pu, pv) =

t
Ǐ

(
te1
te2

)
(e1, e2) Ǐ = (

t
Ǐ ) Ǐ ,

ÎI = −
(

tpu
tpv

)
(νu, νv) =

t
Ǐ

(
te1
te2

)
(e1, e2) ǏI = (

t
Ǐ ) ǏI .

Hence we have the conclusion by (3.11).

Proposition 3.8. There exist functions α, β defined on U such that

(3.31) Eu = EΩ, Ev = EΛ

Ω :=

 0 −α −h1
1

α 0 −h2
1

h1
1 h2

1 0

 , Λ :=

 0 −β −h1
2

β 0 −h2
2

h1
2 h2

2 0

 .

Proof. Since E is SO(3)-valued, Ω := E−1Eu and Λ := E−1Ev are skew-symmetric matrices. The
third columns of Ω and Λ are nothing but the definition of the matrix ǏI .

Definition 3.9. The differential form

µ := αdu+ β dv

is called the connection form with respect to the adapted frame.

Lemma 3.10. The connection forms µ and µ̃ of the adapted frames E and Ẽ as in Lemma 3.6
satisfy

µ̃ = µ+ dφ.

Proof. Let Ω̃ := Ẽ−1Ẽu and Λ̃ := Ẽ−1Ẽv. Then

Ω̃ = Ẽ−1(EuR+ ERu) = Ẽ−1(EΩR+ ERu) = Ẽ−1Ẽ(R−1ΩR+R−1Ru) = R−1ΩR+R−1Ru,

and Λ̃ = R−1ΛR+R−1Ru hold. Then the conclusion follows.
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Exercises

3-1 Assume the first and second fundamental forms of the surface p(u1, u2) are given in the form

ds2 = e2σ((du1)2 + (du2)2), II =
2∑

i,j=1

hij du
i duj ,

where σ is a smooth function in (u1, u2). Compute the matrices Ωj (j = 1, 2) in (3.17).

3-2 Assume the first and second fundamental forms of the surface p(u1, u2) are given in the form

ds2 = (du1)2 + 2 cos θ du1 du2 + (du2)2, II = 2 sin θ du1 du2,

where θ is a smooth function in (u1, u2). Compute the matrices Ωj (j = 1, 2) in (3.17).


