Exercises

3-1 Assume the first and second fundamental forms of the surface $p\left(u^{1}, u^{2}\right)$ are given in the form

$$
d s^{2}=e^{2 \sigma}\left(\left(d u^{1}\right)^{2}+\left(d u^{2}\right)^{2}\right), \quad I I=\sum_{i, j=1}^{2} h_{i j} d u^{i} d u^{j}
$$

where σ is a smooth function in $\left(u^{1}, u^{2}\right)$. Compute the matrices $\Omega_{j}(j=1,2)$ in (3.17).
3-2 Assume the first and second fundamental forms of the surface $p\left(u^{1}, u^{2}\right)$ are given in the form

$$
d s^{2}=\left(d u^{1}\right)^{2}+2 \cos \theta d u^{1} d u^{2}+\left(d u^{2}\right)^{2}, \quad I I=2 \sin \theta d u^{1} d u^{2}
$$

where θ is a smooth function in $\left(u^{1}, u^{2}\right)$. Compute the matrices $\Omega_{j}(j=1,2)$ in (3.17).

4 The Gauss and Codazzi equations

4.1 Gauss and Codazzi equations

The Gauss-Weingarten formulas (Theorem 3.2) can be considered as a system of partial differential equations with unknown \mathcal{F}, whose coefficient matrices are Ω_{1} and Ω_{2}.
Remark 4.1. The coefficient matrices Ω_{1} and Ω_{2} in the Gauss-Weingarten formula are expressed in terms of the coefficients of the first and second fundamental forms. In fact, explicit formula for components of Ω_{j} in terms of $\left(g_{i j}\right)$ and $\left(h_{i j}\right)$ are found in (3.15) and (3.18).

The following proposition is a direct conclusion of Proposition 2.3 and Theorem 3.2:
Proposition 4.2. Let $p: U \rightarrow \mathbb{R}^{3}$ be a parametrized surface defined on a domain U of $u^{1} u^{2}$-plane, and let $\left(g_{i j}\right)$ and $\left(h_{i j}\right)$ be the coefficients of the first and second fundamental forms. Then the matrices Ω_{1} and Ω_{2} in (3.17) satisfy

$$
\begin{equation*}
\frac{\partial \Omega_{1}}{\partial u^{2}}-\frac{\partial \Omega_{2}}{\partial u^{1}}-\Omega_{1} \Omega_{2}+\Omega_{2} \Omega_{1}=O \tag{4.1}
\end{equation*}
$$

In this section, we show that nine equalities (4.1) are reduced to three equalities, as follows:
Theorem 4.3 (Gauss and Codazzi equations). The integrability condition (4.1) is equivalent to the following three equalities:

$$
\begin{align*}
h_{11,2}-h_{21,1} & =\sum_{j}\left(\Gamma_{21}^{j} h_{1 j}-\Gamma_{11}^{j} h_{2 j}\right) \tag{4.2}\\
h_{12,2}-h_{22,1} & =\sum_{j}\left(\Gamma_{22}^{j} h_{1 j}-\Gamma_{12}^{j} h_{2 j}\right) \tag{4.3}\\
K_{d s^{2}} & =\frac{1}{g}\left(h_{11} h_{22}-h_{12} h_{21}\right)(=K) \tag{4.4}
\end{align*}
$$

where $g:=\operatorname{det}\left(g_{i j}\right)=g_{11} g_{22}-g_{12} g_{21}$, and

$$
\begin{align*}
K_{d s^{2}}:= & \frac{1}{g} R_{12} \tag{4.5}\\
R_{j k}:= & \frac{1}{2}\left(g_{1 k, 2 j}-g_{1 j, 2 k}+g_{2 j, 1 k}-g_{2 k, 1 j}\right)-\sum_{i, s} g_{i s}\left(\Gamma_{k 2}^{s} \Gamma_{1 j}^{i}-\Gamma_{k 1}^{s} \Gamma_{2 j}^{i}\right) \tag{4.6}\\
& +2 \sum_{l, s} g_{k l}\left(\Gamma_{s 2}^{l} \Gamma_{1 j}^{s}-\Gamma_{1 s}^{l} \Gamma_{2 j}^{s}\right)
\end{align*}
$$

The equalities (4.2) and (4.3) are called the Codazzi equations, and (4.4) is called the Gauss equation.
Remark 4.4. Let

$$
h_{i j ; k}:=h_{i j, k}-\sum_{l}\left(\Gamma_{i k}^{l} h_{l j}-\Gamma_{k j}^{l} h_{i l}\right)
$$

Then

$$
\nabla I I:=\sum_{i, j, k} h_{i j ; k} d u^{i} \otimes d u^{j} \otimes d u^{k}
$$

does not depend on the coordinate system, which is called the covariant derivative of the second fundamental form. The Codazzi equations is equivalent to $h_{i j ; k}=h_{k i ; j}$, that is, symmetricity of $\nabla I I$.
17. May, 2022. Revised: 31. May, 2022

Remark 4.5. The quantity $K_{d s^{2}}$ in (4.5) is determined only by the first fundamental form, and one can show that it is invariant under coordinate changes. We call it the (intrinsic) Gaussian curvature of $d s^{2}$. The Gauss equation (4.4) claims that the intrinsic Gaussian curvature is identical to the Gaussian curvature of the surface.

Proof of Theorem 4.3. We set

$$
\left(\begin{array}{ccc}
I_{1}^{1} & I_{2}^{1} & I_{3}^{1} \\
I_{1}^{2} & I_{2}^{2} & I_{3}^{2} \\
I_{1}^{3} & I_{2}^{3} & I_{3}^{3}
\end{array}\right):=\Omega_{1,2}-\Omega_{2,1}-\Omega_{1} \Omega_{2}+\Omega_{2} \Omega_{1}
$$

Then the integrability condition (4.1) is equivalent to $I_{j}^{i}=0(i, j=1,2,3)$.
Step 1. By symmetricity of $h_{i j}$ and $g^{i j}$,

$$
\begin{aligned}
I_{3}^{3} & =h_{11} A_{2}^{1}+h_{12} A_{2}^{2}-h_{21} A_{1}^{1}-h_{22} A_{1}^{2}=\sum_{l}\left(h_{1 l} A_{2}^{l}-h_{2 l} A_{1}^{l}\right) \\
& =\sum_{l}\left(h_{1 l} \sum_{s} g^{l s} h_{s 2}-h_{2 l} \sum_{s} g^{l s} h_{s 1}\right) \\
& =\sum_{l, s} g^{l s} h_{1 l} h_{s 2}-\sum_{l, s} g^{l s} h_{s 1} h_{2 l}=\sum_{l, s} g^{l s} h_{1 l} h_{s 2}-\sum_{l, s} g^{s l} h_{l 1} h_{2 s}=0 .
\end{aligned}
$$

Thus the condition $I_{3}^{3}=0$ is satisfied automatically.
Step 2. Since

$$
I_{j}^{3}=h_{1 j, 2}-h_{2 j, 1}-\sum_{l}\left(\Gamma_{2 j}^{l} h_{l 1}-\Gamma_{1 j}^{l} h_{l 2}\right) \quad(j=1,2),
$$

the conditions $I_{j}^{3}=0(j=1,2)$ are equivalent to the Codazzi equations (4.2) and (4.3).
Step 3. For $j=1,2$

$$
\begin{aligned}
I_{3}^{j}= & -A_{1,2}^{j}+A_{2,1}^{j}+\sum_{l}\left(\Gamma_{1 l}^{j} A_{2}^{l}-\Gamma_{2 l}^{j} A_{1}^{l}\right) \\
= & -\sum_{l}\left(g^{j l} h_{1 l}\right)_{, 2}+\sum_{l}\left(g^{j l} h_{l 2}\right)_{, 1}+\sum_{l, s} g^{l s}\left(h_{2 s} \Gamma_{1 l}^{j}-h_{1 s} \Gamma_{2 l}^{j}\right) \\
= & -\sum_{l} g^{j l}\left(h_{1 l, 2}-h_{l 2,1}\right)-\sum_{l}\left(g_{, 2}^{j l} h_{1 l}-g_{, 1}^{j l} h_{l 2}\right)+\sum_{l, s} g^{l s}\left(h_{2 s} \Gamma_{1 l}^{j}-h_{1 s} \Gamma_{2 l}^{j}\right) \\
= & -\sum_{l} g^{j l}\left(h_{1 l, 2}-h_{l 2,1}\right)+\sum_{l} \sum_{\alpha, \beta} g^{\alpha j} g^{l \beta}\left(g_{\alpha \beta, 2} h_{1 l}-g_{\alpha \beta, 1} h_{l 2}\right)+\sum_{l, s} g^{l s}\left(h_{2 s} \Gamma_{1 l}^{j}-h_{1 s} \Gamma_{2 l}^{j}\right) \\
=- & \sum_{l} g^{j l}\left(h_{1 l, 2}-h_{l 2,1}\right)+\sum_{l, \alpha, \beta} g^{\alpha j} g^{l \beta} \sum_{s}\left(\left(g_{\alpha s} \Gamma_{\beta 2}^{s}+g_{s \beta} \Gamma_{2 \beta}^{s}\right) h_{1 l}-\left(g_{\alpha s} \Gamma_{\beta 1}^{s}+g_{s \beta} \Gamma_{1 \beta}^{s}\right) h_{l 2}\right) \\
& +\sum_{l, s} g^{l s}\left(h_{2 s} \Gamma_{1 l}^{j}-h_{1 s} \Gamma_{2 l}^{j}\right) \\
=- & \sum_{l} g^{j l}\left(h_{1 l, 2}-h_{l 2,1}\right)+\sum_{l, \beta} g^{l \beta} \Gamma_{\beta 2}^{j} h_{1 l}+\sum_{l, \alpha} g^{j \alpha} \Gamma_{\alpha 2}^{l} h_{1 l}-\sum_{l, \beta} g^{l \beta} \Gamma_{\beta 1}^{j} h_{2 l}-\sum_{l, \alpha} g^{j \alpha} \Gamma_{\alpha 1}^{l} h_{2 l} \\
& +\sum_{l, s} g^{l s}\left(h_{2 s} \Gamma_{1 l}^{j}-h_{1 s} \Gamma_{2 l}^{j}\right) \\
=- & \sum_{l} g^{j l}\left(h_{1 l, 2}-h_{l 2,1}\right)-\sum_{s}\left(\Gamma_{l 2}^{s} h_{1 s}-\Gamma_{1 l}^{s} h_{2 s}\right)=-\sum_{l} g^{j l} I_{l}^{3},
\end{aligned}
$$

that is,

$$
\binom{I_{3}^{1}}{I_{3}^{2}}=-\left(\begin{array}{ll}
g^{11} & g^{12} \\
g^{21} & g^{22}
\end{array}\right)\binom{I_{1}^{3}}{I_{2}^{3}}
$$

Here, we used Proposition 3.3 and the relation $\widehat{I}_{, k}^{-1}=-\widehat{I}^{-1} \widehat{I}_{, k} \widehat{I}^{-1}$, i.e.,

$$
g_{, k}^{i j}=-\sum_{\alpha \beta} g^{\alpha i} g^{j \beta} g_{\alpha \beta, k}
$$

Hence the conditions $I_{3}^{j}=0(j=1,2)$ are equivalent to $I_{j}^{3}=0(j=1,2)$.
Step 4. Since

$$
I_{j}^{i}=\Gamma_{1 j, 2}^{i}-\Gamma_{2 j, 1}^{i}-\sum_{l}\left(\Gamma_{1 l}^{i} \Gamma_{2 j}^{l}-\Gamma_{2 l}^{i} \Gamma_{1 j}^{l}\right)+A_{1}^{i} h_{j 2}-A_{2}^{i} h_{j 1}
$$

for $i, j=1,2$, we have

$$
\sum_{i} g_{i k} I_{j}^{i}=\left(h_{l 1} h_{j 2}-h_{l 2} h_{j 1}\right)=R_{j k}+h_{k 1} h_{j 2}-h_{k 2} h_{j 1}
$$

where $R_{j k}$ is the quantity given by (4.6). Since the right-most term of the definition of $R_{j k}$ is computed as

$$
\begin{aligned}
\sum_{l, s} g_{k l}\left(\Gamma_{1 j}^{s} \Gamma_{s 2}^{l}-\Gamma_{2 j}^{s} \Gamma_{s 1}^{l}\right)=\frac{1}{2} \sum_{s, t}\left(\left(g_{k 2, s}+g_{s k, 2}\right.\right. & \left.-g_{2 s, k}\right)\left(g_{t j, 1}+g_{1 t, j}-g_{1 j, t}\right) \\
& \left.-\left(g_{k 1, t}+g_{t k, 2}-g_{1 k, t}\right)\left(g_{s j, 22}+g_{2 s, j}-g_{2 j, s}\right)\right)
\end{aligned}
$$

Hence $R_{j k}$ is skew symmetric in j and k :

$$
R_{12}=-R_{21}, \quad R_{11}=R_{22}=0
$$

Therefore $I_{j}^{i}=0$ for $i, j=1,2$ is equivalent to the Gauss equation (4.4).

4.2 Integrability conditions for orthonormal frames

Under the formulation with orthonormal frame as in Proposition 3.8, we can compute the integrability conditions. Since Ω and Λ are skew-symmetric matrices, the conditions consist of three scalar equalities obviously. Such a formulation will be discussed in the lecture on the next quarter.

