6 Pseudospherical surfaces

A pseudospherical surface is a surface with constant negative Gaussian curvature. In this section, we introduce a way to construct pseudospherical surfaces via the fundamental theorem for surface theory. Throughout this section, we let $p: U \to \mathbb{R}^3$ be a regular surface defined on a domain U of the uv-plane and let ν be the unit normal vector field. Denote by ds^2 and II the first and second fundamental forms:

$$ds^{2} = dp \cdot dp = E \, du^{2} + 2 F \, du \, dv + G \, dv^{2}, \qquad II = -dp \cdot d\nu = L \, du^{2} + 2 M \, du \, dv + N \, dv^{2}.$$

By a homothety in \mathbb{R}^3 , it is sufficient to consider only the case of Gaussian curvature -1.

6.1 Asymptotic coordinate systems

A non-zero tangent vector $\mathbf{a} := \alpha p_u(u_0, v_0) + \beta p_v(u_0, v_0)$ of the surface at $\mathbf{P} = p(u_0, v_0)$ $((u_0, v_0) \in U)$ is called an *asymptotic vector* if

$$\alpha^2 L(u_0, v_0) + 2\alpha\beta M(u_0, v_0) + \beta^2 N(u_0, v_0) = 0,$$

and the subspace [a] in the tangent space $dp(T_{(u_0,v_0)}U)$ spanned by a is called the *asymptotic* direction at (u_0,v_0) .

Lemma 6.1. Assume that the Gaussian curvature K is negative at (u_0, v_0) . Then there exists a neighborhood V of (u_0, v_0) and smooth functions α_i , β_i (i = 1, 2) on V such that

(6.1)
$$\boldsymbol{\alpha}_{i}(u,v) := \alpha_{i}(u,v)p_{u}(u,v) + \beta_{i}(u,v)p_{v}(u,v) \qquad (i=1,2)$$

are two linearly independent asymptotic directions at each $(u, v) \in V$.

Proof. Since the Gaussian curvature is negative at (u_0, v_0) , the determinant of the second fundamental matrix \widehat{H} is negative on some neighborhood V of (u_0, v_0) , that is, there exists an orthogonal matrix-valued function P = P(u, v) and positive function $\lambda_i(u, v)$ (i = 1, 2) defined on V such that

(6.2)
$$\widehat{H} = \begin{pmatrix} L & M \\ M & N \end{pmatrix} = {}^{t} P \begin{pmatrix} \lambda_{1} & 0 \\ 0 & -\lambda_{2} \end{pmatrix} P$$

holds on V. Then

$$\begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} = P^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = P^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

are desired functions.

Let $\gamma(t) = (u(t), v(t))$ be a regular curve on U and denote $\hat{\gamma} = p \circ \gamma$. Then $\hat{\gamma}$ is called an *asymptotic curve* if the velocity vector $\dot{\gamma}(t)$ is an asymptotic direction for each t. In other words,

Lemma 6.2. A curve $\hat{\gamma} = p \circ \gamma$ is an asymptotic curve if and only if

$$\dot{u}(t)^2 L(u(t), v(t)) + 2\dot{u}(t)\dot{v}(t)M(u(t), v(t)) + \dot{v}(t)^2 N(u(t), v(t)) = 0$$

for all t, where $\gamma(t) = (u(t), v(t))$ is a regular curve on U.

Definition 6.3. A parameter (u, v) of the surface $p: U \to \mathbb{R}^3$ is called an *asymptotic coordinate* system or an *asymptotic parameter* if both the *u*-curves $u \mapsto p(u, v)$ and the *v*-curves $v \mapsto p(u, v)$ are asymptotic curves.

^{31.} May, 2022. Revised: 07. June, 2022

Lemma 6.4. A coordinate system (u, v) of a surface is an asymptotic coordinate system if and only if the second fundamental form is written in the form

$$II = 2M \, du \, dv,$$

that is, L = N = 0. In particular, $M \neq 0$ if the Gaussian curvature does not vanish.

Proof. Since the *u*-curve $u \mapsto p(u, v)$ is an asymptotic curve for each fixed *v*, Lemma 6.2 implies that L = 0. Similarly, the *v*-curve $v \mapsto p(u, v)$ is also an asymptotic curve, we have N = 0. Since $K = -M^2/(EG - F^2)$, we have the last assertion.

Corollary 6.5. Assume both (u, v) and (ξ, η) are asymptotic coordinate systems of a surface with negative Gaussian curvature. Then the coordinate change $(\xi, \eta) \mapsto (u, v)$ is in one of the following forms:

 $(u, v) = (u(\xi), v(\eta)), \qquad (u, v) = (u(\eta), v(\xi)),$

where $u(\xi)$ etc. are smooth functions in one variable whose derivatives never vanish.

Proof. By Lemma 6.4, the second fundamental form of the surface is written as

$$II = 2M \, du \, dv = 2\widetilde{M} \, d\xi \, d\eta.$$

On the other hand, by the chain rule, it holds that

$$II = 2M (u_{\xi} d\xi + u_{\eta} d\eta) (v_{\xi} d\xi + v_{\eta}, d\eta) = 2M (u_{\xi} v_{\xi} d\xi^{2} + (u_{\xi} v_{\eta} + u_{\eta} v_{\xi}) d\xi d\eta + u_{\eta} v_{\eta} d\eta^{2}).$$

Thus, we have

$$u_{\xi}v_{\xi} = 0 \qquad \text{and} u_{\eta}v_{\eta} = 0.$$

Here, noticing that the coordinate change must satisfy $u_{\xi}v_{\eta} - u_{\eta}v_{\xi} \neq 0$, one of the following holds:

$$u_{\eta} = v_{\xi} = 0, \quad \text{and} \quad u_{\xi} v_{\eta} \neq 0,$$
$$u_{\xi} = v_{\eta} = 0, \quad \text{and} \quad u_{\eta} v_{\xi} \neq 0.$$

This completes the proof.

Theorem 6.6. Let $p: U \to \mathbb{R}^3$ be a regular surface whose Gaussian curvature at (u_0, v_0) is negative. Then there exists a neighborhood V' of (u_0, v_0) and a coordinate change $V' \ni (\xi, \eta) \mapsto (u(\xi, \eta), v(\xi, \eta)) \in U$ for which (ξ, η) is an asymptotic coordinate system.

Proof. This proof is due to [KN63], and also found in [UY17, Appendix B-5].

By Lemma 6.1, there exist smooth functions α_j , β_j (j = 1, 2) on U such that the asymptotic directions are given by (6.1) for each (u, v). We set

$$\boldsymbol{v}_j = \boldsymbol{v}_j(u, v) := \begin{pmatrix} \alpha_j(u, v) \\ \beta_j(u, v) \end{pmatrix} \qquad (j = 1, 2),$$

which are two linearly independent vector fields on U.

Take a regular curve $\sigma_1(s)$ on U with

$$\sigma_1(0) = (u_0, v_0)$$
 and $\frac{d}{ds}\sigma_1(0)$ is linearly independent to $\boldsymbol{v}_2(u_0, v_0)$.

Then one can take a smooth map

(6.3)
$$(s,t) \longmapsto \boldsymbol{u}(s,t) = (\boldsymbol{u}(s,t), \boldsymbol{v}(s,t))$$

such that

$$\frac{\partial \boldsymbol{u}}{\partial t}(s,t) = \boldsymbol{v}_2(\boldsymbol{u}(s,t),\boldsymbol{v}(s,t)), \qquad \boldsymbol{u}(0,0) = (u_0,v_0),$$

by solving an initial value problem of an ordinary differential equation

0

$$\frac{d}{dt}\boldsymbol{u}(s,t) = \boldsymbol{\alpha}_2 \circ \boldsymbol{u}(s,t), \qquad \boldsymbol{u}(s,0) = \sigma_1(s)$$

for each s. Since

$$\frac{\partial \boldsymbol{u}}{\partial s}(0,0) = \frac{d}{ds}\sigma_1(0)$$
 and $\frac{\partial \boldsymbol{u}}{\partial t}(0,0) = \boldsymbol{v}_2(u_0,v_0)$

are linearly independent, the inverse function theorem yields that there exists an inverse map

$$V \ni (u, v) \longmapsto (s(u, v), t(u, v))$$

of (6.3) defined on a sufficiently small neighborhood of (u_0, v_0) . Note that the curve s = constant corresponds to the asymptotic curve tangent to α_2 .

Similarly, for a curve $\sigma_2(\xi)$ with

$$\sigma_2(0) = (u_0, v_0)$$
 and $\frac{d}{d\xi} \sigma_2(0)$ is linearly independent to $\boldsymbol{v}_1(u_0, v_0)$.

and take a smooth map

$$(\xi,\eta) \longmapsto \boldsymbol{u}(\xi,\eta) = (u(\xi,\eta), v(\xi,\eta))$$

such that

$$\frac{\partial \boldsymbol{u}}{\partial \eta}(\xi,\eta) = \boldsymbol{v}_1(\boldsymbol{u}(\xi,\eta),\boldsymbol{u}(\xi,\eta)), \qquad \boldsymbol{u}(0,0) = (u_0,v_0).$$

Then there exists the inverse $(u, v) \mapsto (\xi, \eta)$ defined on a neighborhood of V of (u_0, v_0) . By definition, the curve $\eta = \text{constant corresponds}$ to the asymptotic curve tangent to α_1 .

Using these functions, we let

$$\varphi \colon V \ni (u, v) \mapsto (s(u, v), \eta(u, v)),$$

then (s, η) is a coordinate system such that both s-curves and η -curves correspond to asymptotic curves.

6.2 Asymptotic Chebyshev net

Theorem 6.7. Let $p: U \to \mathbb{R}^3$ be a surface with Gaussian curvature -1. Then for each point $(u_0, v_0) \in U$, there exists a neighborhood V and coordinate change $(\xi, \eta) \mapsto (u, v)$ on V such that the first and second fundamental forms are in the form

$$ds^{2} = d\xi^{2} + 2\cos\theta \,d\xi \,d\eta + d\eta^{2}, \quad II = 2\sin\theta \,d\xi \,d\eta,$$

where $\theta = \theta(\xi, \eta)$ is a smooth function in (ξ, η) valued in $(0, \pi)$.

Proof. By Theorem 6.6, we may assume that (u, v) is an asymptotic coordinate system without loss of generality. Then by Lemma 6.4, the first and second fundamental forms are expressed as

$$ds^2 = E du^2 + 2F du dv + G dv^2, \qquad II = 2M du dv.$$

Since the Gaussian curvature is constant, it hold that $E_v = 0$ and $G_u = 0$, as seen in Exercise 4-1. Hence E (resp. G) depends only on the variable u (resp. v). Since E > 0 and G > 0, we can choose new coordinate system (ξ, η) satisfying

$$\xi(u) := \int \sqrt{E(u)} \, du, \qquad \eta(v) := \int \sqrt{G(v)} \, dv.$$

Then the first and second fundamental form are expressed as

$$ds^{2} = d\xi^{2} + 2\widetilde{F} \, d\xi \, d\eta + d\eta^{2}, \qquad II = 2\widetilde{M} \, d\xi \, d\eta.$$

Here, the regularity of the surface yields $1 - \tilde{F}^2 > 0$, that is, there exists a smooth function $\theta = \theta(\xi, \eta) \in (0, \pi)$ such that $\tilde{F} = \cos \theta$. Moreover, since Gaussian curvature is -1, $\tilde{M}^2 = 1 - \tilde{F}^2 = \sin^2 \theta$ holds. So, by a parameter change $(\xi, \eta) \mapsto (\xi, -\eta)$ and $\theta \mapsto \pi - \theta$, if necessary, we obtain $\tilde{M} = \sin \theta$.

Remark 6.8. The coordinate system in Theorem 6.7 is called the *asymptotic Chebyshev net*. The asymptotic Chebyshev net is unique up to coordinate changes

 $(u,v) \mapsto (v,u)$ and $(u,v) \mapsto (\pm u + u_0, \pm v + v_0)$ $(u_0,v_0) \in \mathbb{R}^2$,

see Corollary 6.5.

6.3 Sine-Gordon equation

As seen in Exercise 5-2, we have

Theorem 6.9. Let U be a domain on uv-plane and $\theta: U \to (0, \pi)$ a smooth function satisfying

(6.4)
$$\theta_{uv} = \sin \theta.$$

If U is simply connected, there exists a regular surface $p: U \to \mathbb{R}^3$ with first and second fundamental forms as

$$ds^{2} = du^{2} + 2\cos\theta \, du \, du + dv^{2}, \qquad II = 2\sin\theta \, du \, dv.$$

In particular, p is a pseudospherical surface.

Remark 6.10. The equation (6.4) is called the *sine-Gordon* equation.

There are numerous "famous" solutions of the sine-Gordon equation, we shall find the simplest non-trivial solutions in this section: Assume the function θ is written in the form $\theta(u, v) = \varphi(u-v)$, where $\varphi = \varphi(t)$ is a smooth function in one variable. Then the sine-Gordon equation (6.4) is reduced to the equation of motion for a pendulum:

(6.5)
$$\ddot{\varphi} = -\sin\varphi.$$

The equation has the first integral

$$\frac{1}{2}\dot{\varphi}^2 - \cos\varphi = \frac{1}{2}\dot{\varphi}^2 - \frac{1}{2}\left(1 - 2\sin^2\frac{\varphi}{2}\right)$$

That is, the value

(6.6)
$$e := \left(\frac{\dot{\varphi}}{2}\right)^2 + \sin^2 \frac{\varphi}{2}$$

is constant along the solution. Now we assume e = 1. In this case, (6.6) is rewritten as

$$\frac{\dot{\varphi}}{2} = \pm \cos \frac{\varphi}{2},$$

then one can complete the integration.

Exercises

- **6-1** Find an explicit solution of (6.5) for e = 1, with initial condition $\varphi(0) = 0$, $\dot{\varphi}(0) = 2$.
- **6-2** For a constant $e \in (0, 1)$, the solution φ of (6.5) with (6.6) is a periodic function. Find the period of such a solution.