## 6 Pseudospherical surfaces

A pseudospherical surface is a surface with constant negative Gaussian curvature. In this section, we introduce a way to construct pseudospherical surfaces via the fundamental theorem for surface theory. Throughout this section, we let $p: U \rightarrow \mathbb{R}^{3}$ be a regular surface defined on a domain $U$ of the $u v$-plane and let $\nu$ be the unit normal vector field. Denote by $d s^{2}$ and $I I$ the first and second fundamental forms:

$$
d s^{2}=d p \cdot d p=E d u^{2}+2 F d u d v+G d v^{2}, \quad I I=-d p \cdot d \nu=L d u^{2}+2 M d u d v+N d v^{2}
$$

By a homothety in $\mathbb{R}^{3}$, it is sufficient to consider only the case of Gaussian curvature -1 .

### 6.1 Asymptotic coordinate systems

A non-zero tangent vector $\boldsymbol{a}:=\alpha p_{u}\left(u_{0}, v_{0}\right)+\beta p_{v}\left(u_{0}, v_{0}\right)$ of the surface at $\mathrm{P}=p\left(u_{0}, v_{0}\right)\left(\left(u_{0}, v_{0}\right) \in\right.$ $U)$ is called an asymptotic vector if

$$
\alpha^{2} L\left(u_{0}, v_{0}\right)+2 \alpha \beta M\left(u_{0}, v_{0}\right)+\beta^{2} N\left(u_{0}, v_{0}\right)=0
$$

and the subspace $[\boldsymbol{a}]$ in the tangent space $d p\left(T_{\left(u_{0}, v_{0}\right)} U\right)$ spanned by $\boldsymbol{a}$ is called the asymptotic direction at $\left(u_{0}, v_{0}\right)$.

Lemma 6.1. Assume that the Gaussian curvature $K$ is negative at $\left(u_{0}, v_{0}\right)$. Then there exists a neighborhood $V$ of $\left(u_{0}, v_{0}\right)$ and smooth functions $\alpha_{i}, \beta_{i}(i=1,2)$ on $V$ such that

$$
\begin{equation*}
\boldsymbol{\alpha}_{i}(u, v):=\alpha_{i}(u, v) p_{u}(u, v)+\beta_{i}(u, v) p_{v}(u, v) \quad(i=1,2) \tag{6.1}
\end{equation*}
$$

are two linearly independent asymptotic directions at each $(u, v) \in V$.
Proof. Since the Gaussian curvature is negative at $\left(u_{0}, v_{0}\right)$, the determinant of the second fundamental matrix $\widehat{I I}$ is negative on some neighborhood $V$ of $\left(u_{0}, v_{0}\right)$, that is, there exists an orthogonal matrix-valued function $P=P(u, v)$ and positive function $\lambda_{i}(u, v)(i=1,2)$ defined on $V$ such that

$$
\widehat{I I}=\left(\begin{array}{cc}
L & M  \tag{6.2}\\
M & N
\end{array}\right)={ }^{t} P\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & -\lambda_{2}
\end{array}\right) P
$$

holds on $V$. Then

$$
\binom{\alpha_{1}}{\beta_{1}}=P^{-1}\binom{1}{0}, \quad\binom{\alpha_{2}}{\beta_{2}}=P^{-1}\binom{0}{1}
$$

are desired functions.
Let $\gamma(t)=(u(t), v(t))$ be a regular curve on $U$ and denote $\hat{\gamma}=p \circ \gamma$. Then $\hat{\gamma}$ is called an asymptotic curve if the velocity vector $\dot{\hat{\gamma}}(t)$ is an asymptotic direction for each $t$. In other words,

Lemma 6.2. A curve $\hat{\gamma}=p \circ \gamma$ is an asymptotic curve if and only if

$$
\dot{u}(t)^{2} L(u(t), v(t))+2 \dot{u}(t) \dot{v}(t) M(u(t), v(t))+\dot{v}(t)^{2} N(u(t), v(t))=0
$$

for all $t$, where $\gamma(t)=(u(t), v(t))$ is a regular curve on $U$.
Definition 6.3. A parameter $(u, v)$ of the surface $p: U \rightarrow \mathbb{R}^{3}$ is called an asymptotic coordinate system or an asymptotic parameter if both the $u$-curves $u \mapsto p(u, v)$ and the $v$-curves $v \mapsto p(u, v)$ are asymptotic curves.

[^0]Lemma 6.4. A coordinate system $(u, v)$ of a surface is an asymptotic coordinate system if and only if the second fundamental form is written in the form

$$
I I=2 M d u d v
$$

that is, $L=N=0$. In particular, $M \neq 0$ if the Gaussian curvature does not vanish.
Proof. Since the $u$-curve $u \mapsto p(u, v)$ is an asymptotic curve for each fixed $v$, Lemma 6.2 implies that $L=0$. Similarly, the $v$-curve $v \mapsto p(u, v)$ is also an asymptotic curve, we have $N=0$. Since $K=-M^{2} /\left(E G-F^{2}\right)$, we have the last assertion.

Corollary 6.5. Assume both $(u, v)$ and $(\xi, \eta)$ are asymptotic coordinate systems of a surface with negative Gaussian curvature. Then the coordinate change $(\xi, \eta) \mapsto(u, v)$ is in one of the following forms:

$$
(u, v)=(u(\xi), v(\eta)), \quad(u, v)=(u(\eta), v(\xi))
$$

where $u(\xi)$ etc. are smooth functions in one variable whose derivatives never vanish.
Proof. By Lemma 6.4, the second fundamental form of the surface is written as

$$
I I=2 M d u d v=2 \widetilde{M} d \xi d \eta
$$

On the other hand, by the chain rule, it holds that

$$
I I=2 M\left(u_{\xi} d \xi+u_{\eta} d \eta\right)\left(v_{\xi} d \xi+v_{\eta}, d \eta\right)=2 M\left(u_{\xi} v_{\xi} d \xi^{2}+\left(u_{\xi} v_{\eta}+u_{\eta} v_{\xi}\right) d \xi d \eta+u_{\eta} v_{\eta} d \eta^{2}\right)
$$

Thus, we have

$$
u_{\xi} v_{\xi}=0 \quad \text { and } u_{\eta} v_{\eta}=0
$$

Here, noticing that the coordinate change must satisfy $u_{\xi} v_{\eta}-u_{\eta} v_{\xi} \neq 0$, one of the following holds:

$$
\begin{aligned}
& u_{\eta}=v_{\xi}=0, \quad \text { and } \quad \begin{array}{l}
u_{\xi} v_{\eta} \neq 0 \\
u_{\xi}=v_{\eta}=0,
\end{array} \quad \text { and } \quad u_{\eta} v_{\xi} \neq 0
\end{aligned}
$$

This completes the proof.
Theorem 6.6. Let $p: U \rightarrow \mathbb{R}^{3}$ be a regular surface whose Gaussian curvature at $\left(u_{0}, v_{0}\right)$ is negative. Then there exists a neighborhood $V^{\prime}$ of $\left(u_{0}, v_{0}\right)$ and a coordinate change $V^{\prime} \ni(\xi, \eta) \mapsto$ $(u(\xi, \eta), v(\xi, \eta)) \in U$ for which $(\xi, \eta)$ is an asymptotic coordinate system.

Proof. This proof is due to [KN63], and also found in [UY17, Appendix B-5].
By Lemma 6.1, there exist smooth functions $\alpha_{j}, \beta_{j}(j=1,2)$ on $U$ such that the asymptotic directions are given by (6.1) for each $(u, v)$. We set

$$
\boldsymbol{v}_{j}=\boldsymbol{v}_{j}(u, v):=\binom{\alpha_{j}(u, v)}{\beta_{j}(u, v)} \quad(j=1,2)
$$

which are two linearly independent vector fields on $U$.
Take a regular curve $\sigma_{1}(s)$ on $U$ with

$$
\sigma_{1}(0)=\left(u_{0}, v_{0}\right) \quad \text { and } \quad \frac{d}{d s} \sigma_{1}(0) \text { is linearly independent to } \boldsymbol{v}_{2}\left(u_{0}, v_{0}\right)
$$

Then one can take a smooth map

$$
\begin{equation*}
(s, t) \longmapsto \boldsymbol{u}(s, t)=(u(s, t), v(s, t)) \tag{6.3}
\end{equation*}
$$

such that

$$
\frac{\partial \boldsymbol{u}}{\partial t}(s, t)=\boldsymbol{v}_{2}(u(s, t), v(s, t)), \quad \boldsymbol{u}(0,0)=\left(u_{0}, v_{0}\right)
$$

by solving an initial value problem of an ordinary differential equation

$$
\frac{d}{d t} \boldsymbol{u}(s, t)=\boldsymbol{\alpha}_{2} \circ \boldsymbol{u}(s, t), \quad \boldsymbol{u}(s, 0)=\sigma_{1}(s)
$$

for each $s$. Since

$$
\frac{\partial \boldsymbol{u}}{\partial s}(0,0)=\frac{d}{d s} \sigma_{1}(0) \quad \text { and } \quad \frac{\partial \boldsymbol{u}}{\partial t}(0,0)=\boldsymbol{v}_{2}\left(u_{0}, v_{0}\right)
$$

are linearly independent, the inverse function theorem yields that there exists an inverse map

$$
V \ni(u, v) \longmapsto(s(u, v), t(u, v))
$$

of (6.3) defined on a sufficiently small neighborhood of $\left(u_{0}, v_{0}\right)$. Note that the curve $s=$ constant corresponds to the asymptotic curve tangent to $\boldsymbol{\alpha}_{2}$.

Similarly, for a curve $\sigma_{2}(\xi)$ with

$$
\sigma_{2}(0)=\left(u_{0}, v_{0}\right) \quad \text { and } \quad \frac{d}{d \xi} \sigma_{2}(0) \text { is linearly independent to } \boldsymbol{v}_{1}\left(u_{0}, v_{0}\right)
$$

and take a smooth map

$$
(\xi, \eta) \longmapsto \boldsymbol{u}(\xi, \eta)=(u(\xi, \eta), v(\xi, \eta))
$$

such that

$$
\frac{\partial \boldsymbol{u}}{\partial \eta}(\xi, \eta)=\boldsymbol{v}_{1}(u(\xi, \eta), u(\xi, \eta)), \quad \boldsymbol{u}(0,0)=\left(u_{0}, v_{0}\right) .
$$

Then there exists the inverse $(u, v) \mapsto(\xi, \eta)$ defined on a neighborhood of $V$ of $\left(u_{0}, v_{0}\right)$. By definition, the curve $\eta=$ constant corresponds to the asymptotic curve tangent to $\boldsymbol{\alpha}_{1}$.

Using these functions, we let

$$
\varphi: V \ni(u, v) \mapsto(s(u, v), \eta(u, v)),
$$

then $(s, \eta)$ is a coordinate system such that both $s$-curves and $\eta$-curves correspond to asymptotic curves.

### 6.2 Asymptotic Chebyshev net

Theorem 6.7. Let $p: U \rightarrow \mathbb{R}^{3}$ be a surface with Gaussian curvature -1 . Then for each point $\left(u_{0}, v_{0}\right) \in U$, there exists a neighborhood $V$ and coordinate change $(\xi, \eta) \mapsto(u, v)$ on $V$ such that the first and second fundamental forms are in the form

$$
d s^{2}=d \xi^{2}+2 \cos \theta d \xi d \eta+d \eta^{2}, \quad I I=2 \sin \theta d \xi d \eta
$$

where $\theta=\theta(\xi, \eta)$ is a smooth function in $(\xi, \eta)$ valued in $(0, \pi)$.
Proof. By Theorem 6.6, we may assume that $(u, v)$ is an asymptotic coordinate system without loss of generality. Then by Lemma 6.4 , the first and second fundamental forms are expressed as

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}, \quad I I=2 M d u d v .
$$

Since the Gaussian curvature is constant, it hold that $E_{v}=0$ and $G_{u}=0$, as seen in Exercise 4-1. Hence $E$ (resp. $G$ ) depends only on the variable $u$ (resp. $v$ ). Since $E>0$ and $G>0$, we can choose new coordinate system $(\xi, \eta)$ satisfying

$$
\xi(u):=\int \sqrt{E(u)} d u, \quad \eta(v):=\int \sqrt{G(v)} d v .
$$

Then the first and second fundamental form are expressed as

$$
d s^{2}=d \xi^{2}+2 \widetilde{F} d \xi d \eta+d \eta^{2}, \quad I I=2 \widetilde{M} d \xi d \eta
$$

Here, the regularity of the surface yields $1-\widetilde{F}^{2}>0$, that is, there exists a smooth function $\theta=\theta(\xi, \eta) \in(0, \pi)$ such that $\widetilde{F}=\cos \theta$. Moreover, since Gaussian curvature is $-1, \widetilde{M}^{2}=1-\widetilde{F}^{2}=$ $\sin ^{2} \theta$ holds. So, by a parameter change $(\xi, \eta) \mapsto(\xi,-\eta)$ and $\theta \mapsto \pi-\theta$, if necessary, we obtain $\widetilde{M}=\sin \theta$.

Remark 6.8. The coordinate system in Theorem 6.7 is called the asymptotic Chebyshev net. The asymptotic Chebyshev net is unique up to coordinate changes

$$
(u, v) \mapsto(v, u) \quad \text { and } \quad(u, v) \mapsto\left( \pm u+u_{0}, \pm v+v_{0}\right) \quad\left(u_{0}, v_{0}\right) \in \mathbb{R}^{2}
$$

see Corollary 6.5.

### 6.3 Sine-Gordon equation

As seen in Exercise 5-2, we have
Theorem 6.9. Let $U$ be a domain on uv-plane and $\theta: U \rightarrow(0, \pi)$ a smooth function satisfying

$$
\begin{equation*}
\theta_{u v}=\sin \theta \tag{6.4}
\end{equation*}
$$

If $U$ is simply connected, there exists a regular surface $p: U \rightarrow \mathbb{R}^{3}$ with first and second fundamental forms as

$$
d s^{2}=d u^{2}+2 \cos \theta d u d u+d v^{2}, \quad I I=2 \sin \theta d u d v
$$

In particular, $p$ is a pseudospherical surface.
Remark 6.10. The equation (6.4) is called the sine-Gordon equation.
There are numerous "famous" solutions of the sine-Gordon equation, we shall find the simplest non-trivial solutions in this section: Assume the function $\theta$ is written in the form $\theta(u, v)=\varphi(u-v)$, where $\varphi=\varphi(t)$ is a smooth function in one variable. Then the sine-Gordon equation (6.4) is reduced to the equation of motion for a pendulum:

$$
\begin{equation*}
\ddot{\varphi}=-\sin \varphi \tag{6.5}
\end{equation*}
$$

The equation has the first integral

$$
\frac{1}{2} \dot{\varphi}^{2}-\cos \varphi=\frac{1}{2} \dot{\varphi}^{2}-\frac{1}{2}\left(1-2 \sin ^{2} \frac{\varphi}{2}\right)
$$

That is, the value

$$
\begin{equation*}
e:=\left(\frac{\dot{\varphi}}{2}\right)^{2}+\sin ^{2} \frac{\varphi}{2} \tag{6.6}
\end{equation*}
$$

is constant along the solution. Now we assume $e=1$. In this case, (6.6) is rewritten as

$$
\frac{\dot{\varphi}}{2}= \pm \cos \frac{\varphi}{2}
$$

then one can complete the integration.

## Exercises

6-1 Find an explicit solution of (6.5) for $e=1$, with initial condition $\varphi(0)=0, \dot{\varphi}(0)=2$.
6-2 For a constant $e \in(0,1)$, the solution $\varphi$ of (6.5) with (6.6) is a periodic function. Find the period of such a solution.


[^0]:    31. May, 2022. Revised: 07. June, 2022
