Advanced Topics in Geometry F (MTH.B502)

SEctional Curvature

Kotaro Yamada kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2022/geom-f/

Tokyo Institute of Technology

2022/07/12

Sectional Curvature

Definition (Definition 4.5)

Let $\Pi_p\subset T_pM$ be a 2-dimensional linear subspace in T_pM . The sectional curvature of (M,g) with respect to the plane Π_p is a number

$$K(\Pi_p) := \mathbf{K}(\mathbf{v} \wedge \mathbf{w}, \mathbf{v} \wedge \mathbf{w}),$$

where $\{oldsymbol{v}, oldsymbol{w}\}$ is an orthonormal basis of Π_p

Curvature forms

- ightharpoonup (M,g): a Riemannian n-manifold.
- $ightharpoonup [e_1, \ldots, e_n]$: an orthonormal frame on $U \subset M$.
- \blacktriangleright (ω^j) : the dual frame
- $ightharpoonup \Omega = (\omega_i^j)$: the connection form.
- $K = (\kappa_i^j) = d\Omega + \Omega \wedge \Omega$: the curvature form.

$$\begin{split} d\omega^i &= \sum_s \omega^s \wedge \omega^i_s, \\ \kappa^i_j &= d\omega^i_j + \sum_s \omega^i_s \wedge \omega^s_j \end{split}$$

A bilinear form induced from the curvature form

 $p \in U$: fix

$$egin{aligned} m{K}(m{\xi},m{\eta}) &:= \sum_{i < j,k < l} \kappa_i^j (m{e}_k,m{e}_l) \xi^{kl} \eta^{ij}, \ m{\xi} &= \sum_{k < l} \xi^{kl} m{e}_k \wedge m{e}_l, \quad m{\eta} = \sum_{i < j} \eta^{ij} m{e}_i \wedge m{e}_j \end{aligned}$$

ightharpoonup K is a bilinear form on $\wedge^2 T_p M$

A bilinear form induced from the curvature form

 $p \in U$: fix

$$egin{aligned} m{K}(m{\xi},m{\eta}) := & \sum_{i < j,k < l} \kappa_i^j (m{e}_k,m{e}_l) \xi^{kl} \eta^{ij}, \ m{\xi} = & \sum_{k < l} \xi^{kl} m{e}_k \wedge m{e}_l, \quad m{\eta} = \sum_{i < j} \eta^{ij} m{e}_i \wedge m{e}_j \end{aligned}$$

Lemma (Lemma 4.4)

 $oldsymbol{K}$ is symmetric.

Proof of Lemma 4.4 (1)

Proposition (The first Bianchi identity; Prop. 4.2) $\kappa_j^i(e_k, e_l) + \kappa_k^i(e_l, e_j) + \kappa_l^i(e_j, e_k) = 0.$

Proof of Lemma 4.4 (2)

Corollary (Cor. 4.3)
$$\kappa_j^i(\mathbf{e}_k, \mathbf{e}_l) = \kappa_l^k(\mathbf{e}_i, \mathbf{e}_j).$$

Proof of Lemma 4.4 (3)

$$m{K}(m{\xi},m{\eta}) := \sum_{i < j,k < l} \kappa_i^j(m{e}_k,m{e}_l) \xi^{kl} \eta^{ij}$$

Corollary (Cor. 4.3)

$$\kappa_j^i(\boldsymbol{e}_k, \boldsymbol{e}_l) = \kappa_l^k(\boldsymbol{e}_i, \boldsymbol{e}_j).$$

Lemma (Lemma 4.4)

 $oldsymbol{K}$ is symmetric.

Sectional Curvature

Definition (Definition 4.5)

Let $\Pi_p\subset T_pM$ be a 2-dimensional linear subspace in T_pM . The sectional curvature of (M,g) with respect to the plane Π_p is a number

$$K(\Pi_p) := \mathbf{K}(\mathbf{v} \wedge \mathbf{w}, \mathbf{v} \wedge \mathbf{w}),$$

where $\{oldsymbol{v}, oldsymbol{w}\}$ is an orthonormal basis of Π_p

Exercise 4-1

Problem (Ex. 4-1)

Consider a Riemannian metric

$$g = dr^2 + \{\varphi(r)\}^2 \, d\theta^2 \, \text{ on } U := \{(r,\theta) \, ; \, 0 < r < r_0, -\pi < \theta < \pi\},$$

where $r_0 \in (0, +\infty]$ and φ is a positive smooth function defined on $(0, r_0)$ with

$$\lim_{r\to +0} \varphi(r)=0, \qquad \lim_{r\to +0} \frac{\varphi(r)}{r}=1.$$

Classify the function φ so that g is of constant sectional curvature.

Exercise 4-2

Problem (Ex. 4-2)

Let $M \subset \mathbb{R}^{n+1}$ be an embedded submanifold with the Riemannian metric induced from the canonical Euclidean metric of \mathbb{R}^{n+1} . Then the position vector vector $\boldsymbol{x}(p)$ of $p \in M$ induces a smooth map

$$\boldsymbol{x} \colon M \ni p \longmapsto \boldsymbol{x}(p) \in \mathbb{R}^{n+1},$$

which is an (n+1)-tuple of C^{∞} -functions. Let $[e_1,\ldots,e_n]$ be an orthonormal frame defined on a domain $U\subset M$. Since $T_pM\subset \mathbb{R}^{n+1}$, we can consider that e_j is a smooth map from $U\to \mathbb{R}^{n+1}$. Take a dual basis (ω^j) to $[e_j]$. Prove that

$$d\boldsymbol{x} = \sum_{j=1}^{n} \boldsymbol{e}_{j} \omega^{j}$$

holds on U.