Advanced Topics in Geometry F (MTH.B502)

Space forms

Kotaro Yamada

kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2022/geom-f/

Tokyo Institute of Technology

2022/07/19

Exercise 4-1

Problem (Ex. 4-1)

Consider a Riemannian metric

$$g = dr^2 + \{\varphi(r)\}^2 \, d\theta^2 \, \text{ on } U := \{(r,\theta)\,;\, 0 < r < r_0, -\pi < \theta < \pi\},$$

where $r_0 \in (0, +\infty]$ and φ is a positive smooth function defined on $(0, r_0)$ with

$$\lim_{r \to +0} \varphi(r) = 0, \qquad \lim_{r \to +0} \frac{\varphi(r)}{r} = 1.$$

Classify the function φ so that g is of constant sectional curvature.

$$\kappa_1^2 = -\frac{\varphi''}{\varphi}\omega^1 \wedge \omega^2$$

Exercise 4-2

Problem (Ex. 4-2)

Let $M \subset \mathbb{R}^{n+1}$ be an embedded submanifold with the Riemannian metric induced from the canonical Euclidean metric of \mathbb{R}^{n+1} . Then the position vector vector $\boldsymbol{x}(p)$ of $p \in M$ induces a smooth map

$$\boldsymbol{x} \colon M \ni p \longmapsto \boldsymbol{x}(p) \in \mathbb{R}^{n+1},$$

which is an (n+1)-tuple of C^{∞} -functions. Let $[e_1,\ldots,e_n]$ be an orthonormal frame defined on a domain $U\subset M$. Since $T_pM\subset \mathbb{R}^{n+1}$, we can consider that e_j is a smooth map from $U\to \mathbb{R}^{n+1}$. Take a dual basis (ω^j) to $[e_j]$. Prove that

$$d\boldsymbol{x} = \sum_{j=1}^{n} \boldsymbol{e}_{j} \omega^{j}$$

holds on U.