Advanced Topics in Geometry F (MTH.B502) Space forms

Kotaro Yamada kotaro@math.titech.ac.jp http://www.math.titech.ac.jp/~kotaro/class/2022/geom-f/

Tokyo Institute of Technology

2022/07/19

Constant sectional curvature 1

Theorem (Thm. 5.1)

Assume there exists a real number k such that $K(\Pi_p) = k$ for all 2-dimensional subspace $\Pi_p \in T_pM$ for a fixed p. Then the curvature form is expressed as

$$\kappa_i^j = k\omega^i \wedge \omega^j.$$

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.

Constant sectional curvature 1

$$\blacktriangleright k = K(\operatorname{Span}\{\boldsymbol{e}_i, \boldsymbol{e}_j\}) = \boldsymbol{K}(\boldsymbol{e}_i \wedge \boldsymbol{e}_j, \boldsymbol{e}_i \wedge \boldsymbol{e}_j)] = \kappa_j^i(\boldsymbol{e}_i, \boldsymbol{e}_j).$$

$$\blacktriangleright K(e_i \wedge e_l, e_j \wedge e_m) = 0.$$

$$\mathbf{K}(\mathbf{e}_i \wedge \mathbf{e}_l, \mathbf{e}_j \wedge \mathbf{e}_m) + \mathbf{K}(\mathbf{e}_i \wedge \mathbf{e}_m, \mathbf{e}_j \wedge \mathbf{e}_l) = 0.$$

$$\kappa_i^j(\mathbf{e}_k, \mathbf{e}_l) = \begin{cases} k & (i, j) = (k, l) \\ 0 & \text{otherwise,} \end{cases}$$

Constant sectional curvature 2

Theorem (Thm. 5.2)

Assume that for each p, there exists a real number k(p) such that $K(\Pi_p) = k(p)$ for any $\Pi_p \in \operatorname{Gr}_2(T_pM)$. Then the function $k \colon M \ni p \to k(p) \in \mathbb{R}$ is constant provided that M is connected.

$$d\kappa_i^j = \sum_s \left(\kappa_s^j \wedge \omega_i^s - \omega_s^j \wedge \kappa_i^s\right),\,$$

Space Forms

Definition (Def. 5.3)

An *n*-dimensional <u>space form</u> is a complete Riemannian *n*-manifold of constant sectional curvature.

The Euclidean space

The Euclidean *n*-space: $K = (\kappa_i^j) = O$.

The Hyperbolic space

$$H^n(-c^2) := \left\{ \boldsymbol{x} = (x^0, \dots, x^n) \in \mathbb{R}^{n+1}_1 \mid \langle \boldsymbol{x}, \boldsymbol{x} \rangle_L = -\frac{1}{c^2}, cx_0 > 0 \right\},$$

The Hyperbolic space

Theorem

The hyperbolic space $(H^n(-c^2), g_H)$ is of constant sectional curvature $-c^2$.

Exercise 5-1

Problem (Ex. 5-1)

Prove that the sphere

$$S^{n}(c^{2}) = \left\{ \boldsymbol{x} \in \mathbb{R}^{n+1} \, ; \, \langle \boldsymbol{x}, \boldsymbol{x} \rangle = rac{1}{c^{2}}
ight\}$$

of radius 1/c in the Eucidean n + 1-space is of constant sectional curvature c^2 .

Exercise 5-2

Problem (Ex. 5-2)

Let $f: U \to \mathbb{R}^{n+1}$ be an immersion defined on a domain $U \subset \mathbb{R}^n$, and ν a unit normal vector field. Take an orthornormal frame $[e_1, \ldots, e_n]$ of the tangent bundle of U, and consider each e_j a map into \mathbb{R}^{n+1} . In addition, we consider ν an \mathbb{R}^{n+1} -valued function. Prove that

$$d
u = -\sum_j h^j oldsymbol{e}_j, \qquad$$
 where $h^j := \langle doldsymbol{e}_j,
u
angle .$