Advanced Topics in Geometry F (MTH.B502)

Space forms

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2022/geom-f/

Tokyo Institute of Technology

$$
2022 / 07 / 19
$$

Constant sectional curvature 1

Theorem (Thm. 5.1)
Assume there exists a real number k such that $K\left(\Pi_{p}\right)=k$ for all 2-dimensional subspace $\Pi_{p} \in T_{p} M$ for a fixed p. Then the curvature form is expressed as

$$
\kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j} .
$$

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.

Constant sectional curvature 1

- $\left.k=K\left(\operatorname{Span}\left\{\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)\right]=\kappa_{j}^{i}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$.
- K $\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=0$.
$-\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=0$.

$$
\kappa_{i}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)= \begin{cases}k & (i, j)=(k, l) \\ 0 & \text { otherwise }\end{cases}
$$

Constant sectional curvature 2

Theorem (Thm. 5.2)
Assume that for each p, there exists a real number $k(p)$ such that $K\left(\Pi_{p}\right)=k(p)$ for any $\Pi_{p} \in \operatorname{Gr}_{2}\left(T_{p} M\right)$. Then the function $k: M \ni p \rightarrow k(p) \in \mathbb{R}$ is constant provided that M is connected.

$$
d \kappa_{i}^{j}=\sum_{s}\left(\kappa_{s}^{j} \wedge \omega_{i}^{s}-\omega_{s}^{j} \wedge \kappa_{i}^{s}\right)
$$

Space Forms

Definition (Def. 5.3)
An n-dimensional space form is a complete Riemannian n-manifold of constant sectional curvature.

The Euclidean space

The Euclidean n-space: $K=\left(\kappa_{i}^{J}\right)=O$.

The Hyperbolic space

$$
H^{n}\left(-c^{2}\right):=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=-\frac{1}{c^{2}}\right., c x_{0}>0\right\}
$$

The Hyperbolic space

Theorem
The hyperbolic space $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ is of constant sectional curvature $-c^{2}$.

Exercise 5-1

Problem (Ex. 5-1)
Prove that the sphere

$$
S^{n}\left(c^{2}\right)=\left\{\boldsymbol{x} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\frac{1}{c^{2}}\right\}
$$

of radius $1 / c$ in the Eucidean $n+1$-space is of constant sectional curvature c^{2}.

Exercise 5-2

Problem (Ex. 5-2)

Let $f: U \rightarrow \mathbb{R}^{n+1}$ be an immersion defined on a domain $U \subset \mathbb{R}^{n}$, and ν a unit normal vector field. Take an orthornormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ of the tangent bundle of U, and consider each \boldsymbol{e}_{j} a map into \mathbb{R}^{n+1}. In addition, we consider ν an \mathbb{R}^{n+1}-valued function. Prove that

$$
d \nu=-\sum_{j} h^{j} \boldsymbol{e}_{j}, \quad \text { where } \quad h^{j}:=\left\langle d \boldsymbol{e}_{j}, \nu\right\rangle
$$

