Advanced Topics in Geometry F (MTH.B502)

Local uniqueness of space forms

Kotaro Yamada kotaro@math.titech.ac.jp http://www.math.titech.ac.jp/~kotaro/class/2022/geom-f/

Tokyo Institute of Technology

2022/07/26

Exercise 5-1

Problem (Ex. 5-1)

Prove that the sphere

$$S^n(c^2) = \left\{ oldsymbol{x} \in \mathbb{R}^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = rac{1}{c^2}
ight\}$$

of radius 1/c in the Eucidean n + 1-space is of constant sectional curvature c^2 .

Corrections on Proof of Theorem 5.5: $\frac{1}{c} \rightarrow c$

Exercise 5-2

Problem (Ex. 5-2)

Let $f: U \to \mathbb{R}^{n+1}$ be an immersion defined on a domain $U \subset \mathbb{R}^n$, and ν a unit normal vector field. Take an orthornormal frame $[e_1, \ldots, e_n]$ of the tangent bundle of U, and consider each e_j a map into \mathbb{R}^{n+1} . In addition, we consider ν an \mathbb{R}^{n+1} -valued function. Prove that

$$d
u = -\sum_j h^j oldsymbol{e}_j, \qquad$$
 where $h^j := \langle doldsymbol{e}_j,
u
angle .$