1 Riemannian metrics

In this section, we deal with differentiable manifolds. For a student not familiar to manifold theory, it is sufficient to imagine a domain of the Euclidean space, since our purpose is local theory of Riemannian manifolds.

Let M be an n-dimensional differentiable manifold, and denote by $\mathcal{F}(M)$ the set of differentiable functions on M. Take a coordinate neighborhood $\left(U ; u^{1}, \ldots, u^{n}\right)$ on M.

Tangent spaces For a fixed point $p \in M$, a linear map $X: \mathcal{F}(M) \rightarrow \mathbb{R}$ satisfying the Leibniz rule $X(f g)=f(p) X g+g(p) X f$ is called a tangent vector of M at p. Taking a local coordinate system $\left(U ;\left(x^{1}, \ldots, x^{n}\right)\right)$ containing p, the maps

$$
\left(\frac{\partial}{\partial x^{j}}\right)_{p}: \mathcal{F}(M) \ni f \longmapsto\left(\frac{\partial}{\partial x^{j}}\right)_{p} f=\frac{\partial f \circ \varphi^{-1}}{\partial x^{j}}(\varphi(p)) \in \mathbb{R}
$$

are tangent vectors at p. The set of tangent vectors of M at p is called the tangent space of M at p, and denoted by $T_{p} M$. The tangent space is an $n(=\operatorname{dim} M)$-dimensional vector space spanned by

$$
\begin{equation*}
\left[\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p}\right] . \tag{1.1}
\end{equation*}
$$

Take another local coordinate system $\left(V,\left(y^{1}, \ldots, y^{n}\right)\right)$. Then the coordinate change $\left(x^{j}\right) \mapsto\left(y^{l}\right)$ is a local diffeomorphism between domains in \mathbb{R}^{n}. Using this, we can write

$$
\begin{equation*}
\left(\frac{\partial}{\partial x^{j}}\right)_{p}=\sum_{k=1}^{n} \frac{\partial y^{k}}{\partial x^{j}}(p)\left(\frac{\partial}{\partial y^{k}}\right)_{p} \tag{1.2}
\end{equation*}
$$

On the other hand, if $X \in T_{p} M$ is written as

$$
X=\sum_{j=1}^{n} X^{j}\left(\frac{\partial}{\partial x^{j}}\right)_{p}=\sum_{k=1}^{n} \tilde{X}^{k}\left(\frac{\partial}{\partial y^{k}}\right)_{p},
$$

it holds that

$$
\begin{equation*}
\tilde{X}^{k}=\sum_{j=1}^{n} \frac{\partial y^{k}}{\partial x^{j}}(p) X^{j} \tag{1.3}
\end{equation*}
$$

Cotangent space. The dual space of the vector space $T_{p} M$ is called the cotangent space at p, and denoted by $T_{p}^{*} M$. In other words,

$$
T_{p}^{*} M=\left\{\alpha: T_{p} M \rightarrow \mathbb{R} ; \alpha \text { is a linear map }\right\}
$$

We denote the dual basis of (1.1) by

$$
\begin{equation*}
\left[\left(d x^{1}\right)_{p}, \ldots,\left(d x^{n}\right)_{p}\right] \tag{1.4}
\end{equation*}
$$

That is, $\left(d x^{j}\right)_{p} \in T_{p}^{*} M$ is defined as

$$
\left(d x^{j}\right)_{p}\left(\left(\frac{\partial}{\partial x^{k}}\right)_{p}\right)=\delta_{k}^{j}
$$

By (1.2), we have

$$
\begin{equation*}
\left(d y^{k}\right)_{p}=\sum_{j=1}^{n} \frac{\partial y^{k}}{\partial x^{j}}(p)\left(d x^{j}\right)_{p} \tag{1.5}
\end{equation*}
$$

14. June, 2022. Revised: 19. July, 2022

1.1 The tangent bundle and vector fields.

We denote the direct union of tangent spaces by

$$
T M:=\bigcup_{p \in M} T_{p} M
$$

and called the tangent bundle of M. Define a map

$$
\tilde{\varphi}: \pi^{-1}(U) \ni X=\sum_{j=1}^{n} X^{j}\left(\frac{\partial}{\partial x^{j}}\right)_{p} \longmapsto\left(\varphi(p), X^{1}, \ldots, X^{n}\right) \in \varphi(U) \times \mathbb{R}^{n}
$$

for each local coordinate system $\left(U, \varphi=\left(x^{1}, \ldots, x^{n}\right)\right)$, where $\pi: T M \rightarrow M$ is the canonical projection. By these, $T M$ can be considered as a differentiable manifold of dimension $2 n$.

A vector field on M is a map $X: M \rightarrow T M$ satisfying $\pi \circ X=\mathrm{id}_{M}$, where id_{M} is the identity map on M. In other words, X is a "smooth" correspondence to each point p to a tangent vector $X_{p} \in T_{p} M$. Using local coordinate system, one can write

$$
\begin{equation*}
X=\sum_{j=1}^{n} X^{j}\left(x^{1}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{j}} \quad\left(X^{j}\left(x^{1}, \ldots, x^{n}\right) \text { are differentiable functions in }\left(x^{k}\right)\right) \tag{1.6}
\end{equation*}
$$

where $\partial / \partial x^{j}$ is a local vector field given by $p \mapsto\left(\partial / \partial x^{j}\right)_{p}$.

Vector bundles induced from the tangent bundle. The cotangent bundle is the union of cotangent spaces $T^{*} M=\cup_{p \in M} T_{p}^{*} M$ with appropriate structure of a $2 n$-manifold. Taking tensor products of tangent and cotangent spaces, one can consider the tensor product of tangent and cotangent bundles, for example,

$$
T^{*} M \otimes T^{*} M:=\bigcup_{p \in M} T_{p}^{*} M \otimes T_{p}^{*} M
$$

In general, a triple (E, M, π) of differentiable manifolds E and M, and a differentiable map $\pi: E \rightarrow M$ is called a vector bundle on M if it satisfies the following:

- π is a surjection.
- For each $p \in M, E_{p}:=\pi^{-1}(p)$ is endowed with a structure of N-dimensional vector space.
- There exists an open cover $\left\{U_{\alpha}\right\}$ on M and a family $\left\{\tilde{\varphi}_{\alpha}\right\}$ of diffeomorphisms $\tilde{\varphi}_{\alpha}: \pi^{-1}(U) \rightarrow$ $U \times \mathbb{R}^{N}$ such that $\left.\tilde{\varphi}_{\alpha}\right|_{E_{p}}: E_{p} \rightarrow\{p\} \times \mathbb{R}^{N} \simeq \mathbb{R}^{N}$ is a linear map for each p.

The tangent bundle $T M$, the cotangent bundle $T^{*} M$ and the tensor product $T^{*} M \otimes T^{*} M$ are vector bundles on M.

A section of a vector bundle (E, M, π) (often denoted by E for simplicity) is a differentiable $\operatorname{map} \xi: M \rightarrow E$ satisfying $\pi \circ \xi=\mathrm{id}_{M}$. The set of sections of a vector bundle E is denoted by $\Gamma(E)$. In particular, the set of vector fields is denoted by

$$
\mathfrak{X}(M)=\Gamma(T M) .
$$

In general $\Gamma(E)$ is a structure of infinite dimensional vector space. Moreover, it is also considered as an $\mathcal{F}(M)$-module.

Riemannian metrics A bilinear form on M is a section of the vector bundle

$$
\begin{aligned}
& S\left(T^{*} M \otimes T^{*} M\right)=\cup_{p \in M} S\left(T_{p}^{*} M \otimes T_{p}^{*} M\right) \\
& \qquad S\left(T_{p}^{*} M \otimes T_{p}^{*} M\right)=\left\{\text { (symmetric) bilinear forms on } T_{p} M\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
S\left(T_{p}^{*} M \otimes T_{p}^{*} M\right) & =\left\{Q \in T_{p}^{*} M \otimes T_{p}^{*} M ; Q(X, Y)=Q(Y, X) \text { for } X, Y \in T_{p} M\right\} \\
& =\left\{Q: T_{p} M \times T_{p} M \rightarrow \mathbb{R} ; \text { bilinear, and } Q(X, Y)=Q(Y, X) \text { for } X, Y \in T_{p} M\right\}
\end{aligned}
$$

Lemma 1.1. A map $Q: p \mapsto Q_{p}$, where Q_{p} is a bilinear form on $T_{p} M$, is a smooth section of $S\left(T^{*} M \otimes T^{*} M\right)$ if and only if

$$
M \ni p \longmapsto Q_{p}\left(X_{p}, Y_{p}\right) \in \mathbb{R}
$$

for each pair of smooth vector fields $X, Y \in \mathfrak{X}(M)$.
Definition 1.2. A Riemannian metric (resp. pseudo Riemannian metric) is a section $g \in \Gamma\left(S\left(T^{*} M \otimes\right.\right.$ $\left.T^{*} M\right)$) such that the quadratic form g_{p} on $T_{p} M$ is positive definite inner product (resp. nondegenerate inner product) on $T_{p} M$. A pair (M, g) of a manifold M and a (pseudo) Riemannian metric g is called a (pseudo) Riemannian manifold.

Let (M, g) be a Riemannian manifold. Then, on a local coordinate system $\left(U,\left(x^{j}\right)\right)$ on M, g is expressed as

$$
g=\sum_{i, j=1}^{n} g_{i j} d x^{i} \otimes d x^{j} \quad g_{i j}=g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)
$$

Moreover, each $g_{i j}$ is a smooth function on U, and the matrix $\left(g_{i j}\right)$ is a positive definite symmetric matrix. We often abbreviate $g(X, Y)$ by $\langle X, Y\rangle$.
Fact 1.3. There exists a Riemannian metric on an arbitrary (paracompact) manifold.
Example 1.4 (Euclidean spaces). As a differentiable n-manifold, the tangent space $T_{p} \mathbb{R}^{n}$ of \mathbb{R}^{n} can be identified with (the vector space) \mathbb{R}^{n}. More precisely, let $\left(x^{1}, \ldots, x^{n}\right)$ be the canonical coordinate system of \mathbb{R}^{n}. Then

$$
T_{p} \mathbb{R}^{n} \ni X=\sum X^{j}\left(\frac{\partial}{\partial x^{j}}\right)_{p} \leftrightarrow\left(X^{1}, \ldots, X^{n}\right) \in \mathbb{R}^{n}
$$

is the identification map of $T_{p} \mathbb{R}^{n}$ with \mathbb{R}^{n}.
Then the Euclidean inner product of \mathbb{R}^{n} can be regarded as an inner product of $T_{p} \mathbb{R}^{n}$. Hence we obtain the canonical Riemannian metric g_{0} on \mathbb{R}^{n}. Under the canonical coordinate system $\left(x^{1}, \ldots, x^{n}\right), g_{0}$ is written as

$$
g_{0}=d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+\cdots+d x^{n} \otimes d x^{n}=\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\cdots+\left(d x^{n}\right)^{2}
$$

Example 1.5 (Submanifolds). Let N be a manifold, and $M \subset N$ a submanifold. Then for each $p \in M$, the tangent space $T_{p} M$ is a linear subspace of $T_{p} N$. If a Riemannian metric g on N is given, the restriction of g on $T_{p} M$ gives a Riemannian metric on M. Such a metric is called the metric on M induced by g, and denoted by $\left.g\right|_{M}$.
Example 1.6 (Spheres). Let $k=c^{2}$ be a positive number and set

$$
S^{n}(k):=\left\{\boldsymbol{x}=\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{R}^{n+1} \left\lvert\,\langle x, x\rangle=\sum_{j=1}^{n+1}\left(x^{j}\right)^{2}=\frac{1}{k}\right.\right\}
$$

where $\left(x^{1}, \ldots, x^{n+1}\right)$ is the standard coordinate system on \mathbb{R}^{n+1}. Then one can easily see that $S^{n}(k)$ is a submanifold of \mathbb{R}^{n+1}, and hence, the canonical metric g_{0} of \mathbb{R}^{n+1} induces a Riemannian metric on $S^{n}(k)$. In particular, the metric on $S^{n}=S^{n}(1)$ induced from the Euclidean metric is called the canonical metric on S^{n}.

Example 1.7 (The Lorentz Minkowski space). An inner product

$$
\langle X, Y\rangle_{L}:=-X^{0} Y^{0}+X^{1} Y^{1}+\ldots X^{n} Y^{n} \quad \begin{aligned}
& \\
& \quad X=\left(X^{0}, X^{1}, \ldots, X^{n}\right), \quad Y=\left(Y^{0}, Y^{1}, \ldots, Y^{n}\right)
\end{aligned}
$$

on \mathbb{R}^{n+1} of signature $(n, 1)$ is called the Minkowski inner product, and the pair $\mathbb{R}_{1}^{n+1}:=\left(\mathbb{R}^{n+1},\langle\rangle,\right)$ the Minkowski vector space. A vector $X \in \mathbb{R}_{1}^{n+1} \backslash\{\mathbf{0}\}$ is said to be space-like, light-like or null, and time-like, if $\langle X, X\rangle_{L}>0,\langle X, X\rangle_{L}=0$, and $\langle X, X\rangle_{L}<0$, respectively.

In the same way as the Euclidean space case, the inner product \langle,\rangle_{L} induces the structure of pseudo Riemannian metric g_{L} on \mathbb{R}^{n+1}. We call the pseudo Riemannian manifold $\mathbb{R}_{1}^{n+1}=$ $\left(\mathbb{R}^{n_{+}}, g_{L}\right)$ the Lorentz-Minkowski space, or Minkowski space. The metric g_{L} is expressed as

$$
g_{L}:=-d x^{0} \otimes d x^{0}+d x^{1} \otimes d x^{1}+\cdots+d x^{n} \otimes d x^{n}=-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\cdots+\left(d x^{n}\right)^{2}
$$

under the canonical coordinate system $\left(x^{0}, \ldots, x^{n}\right)$.
Example 1.8 (Hyperbolic spaces). First, we claim (cf. Exercise 1-2)
Let \boldsymbol{v} be a time-like vector on the Minkowski vector space \mathbb{R}_{1}^{n+1}. Then its orthogonal complement $\left\{X \mid\langle X, \boldsymbol{v}\rangle_{L}=0\right\}$ is an n-dimensional subspace of \mathbb{R}_{1}^{n+1} consists of spacelike vectors and $\mathbf{0}$.

For a negative constant $k=-c^{2}(c \in \mathbb{R} \backslash\{0\})$, we set

$$
H^{n}\left(-c^{2}\right):=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=-\frac{1}{c^{2}}\right., c x_{0}>0\right\} .
$$

Then one can easily see that $H^{n}\left(-c^{2}\right)$ is a connected submanifold of \mathbb{R}_{1}^{n+1}.
For each point $\boldsymbol{x} \in H^{n}$, the tangent space of $H^{n}\left(-c^{2}\right)$ is expressed as

$$
T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)=\left\{\boldsymbol{v} \in L^{n+1} \mid\langle\boldsymbol{x}, \boldsymbol{v}\rangle_{L}=0\right\} .
$$

In other words, the tangent space is an orthogonal complement of the position vector (which is time-like). Then $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ consists of space-like vectors, that is, the restriction g_{L} to the tangent space of $H^{n}\left(-c^{2}\right)$ is positive definite. Hence it induces the Riemannian metric g_{H}. The Riemannian manifold $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ (resp. $\left.\left(H^{n}=H^{n}(-1), g_{H}\right)\right)$ is called the hyperbolic space.

Exercises

1-1 Let $U \subset \mathbb{R}^{n}$ be a domain and g a Riemannian metric on U. Show that
(1) There exists an n-tuple of vector fields $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ such that

$$
g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j}= \begin{cases}1 & (i=j) \\ 0 & (\text { otherwise })\end{cases}
$$

(2) Take another n-tuple $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ satisfying $g\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=\delta_{i j}$. Then there exists a matrixvalued function

$$
\Theta: U \rightarrow \mathrm{O}(n) \quad\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \Theta
$$

1-2 Let $\mathbb{R}_{1}^{n+1}=\left(\mathbb{R}^{n+1},\langle,\rangle_{L}\right)$ be the Minkowski vector space. Show that if $\boldsymbol{v} \in \mathbb{R}_{1}^{n+1}$ satisfies $\langle\boldsymbol{v}, \boldsymbol{v}\rangle_{L}=-1$, the orthogonal complement

$$
\boldsymbol{v}^{\perp}:=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} ;\langle\boldsymbol{v}, \boldsymbol{x}\rangle_{L}=0\right\}
$$

is an n-dimensional space-like subspace of \mathbb{R}_{1}^{n+1}.

