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1 Riemannian metrics

In this section, we deal with differentiable manifolds. For a student not familiar to manifold theory,
it is sufficient to imagine a domain of the Euclidean space, since our purpose is local theory of
Riemannian manifolds.

Let M be an n-dimensional differentiable manifold, and denote by F (M) the set of differentiable
functions on M. Take a coordinate neighborhood (U;u!,...,u™) on M.

Tangent spaces For a fixed point p € M, a linear map X: F(M) — R satisfying the Leibniz

rule X(fg) = f(p)Xg+ g(p)X [ is called a tangent vector of M at p. Taking a local coordinate

system (U; (x!,...,2™)) containing p, the maps

(55) 70025 (55) 1= 2o etm

are tangent vectors at p. The set of tangent vectors of M at p is called the tangent space of M at
p, and denoted by T,,M . The tangent space is an n (= dim M )-dimensional vector space spanned
by

(), G

Take another local coordinate system (V, (y',...,4™)). Then the coordinate change (27) + (y') is
a local diffeomorphism between domains in R™. Using this, we can write

On the other hand, if X € T, M is written as
" (0 "L 0
X=X <) => X* <k> ;
= oxI » oy* »
it holds that

n ayk )

(1.3) Xk = (p)X7.

= o
Jj=1 g

Cotangent space. The dual space of the vector space T),M is called the cotangent space at p,
and denoted by T7 M. In other words,

TyM = {a: T,M — R;a is a linear map}.
We denote the dual basis of (1.1) by

(1.4) [(dzY),,. .., (dz"),] .
That is, (dz?), € T, M is defined as

By (1.2), we have

(15 () =3 O (o)),
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1.1 The tangent bundle and vector fields.

We denote the direct union of tangent spaces by

T™ = | ] T,M,
peEM

and called the tangent bundle of M. Define a map

g:m N U)X = ZXj ((‘)iﬂ) — (e(p), X',...,X") € p(U) x R"

for each local coordinate system (U, ¢ = (z!,...,2")), where m: TM — M is the canonical pro-
jection. By these, TM can be considered as a differentiable manifold of dimension 2n.

A wector field on M is a map X : M — T M satisfying m o X = idys, where idj; is the identity
map on M. In other words, X is a “smooth” correspondence to each point p to a tangent vector
X, € T,M. Using local coordinate system, one can write

(1.6) X-= ;Xj (z*, ... ,x”)@ ( X7(xt,...,2") are differentiable functions in (")),

where 9/027 is a local vector field given by p — (9/9z7),.

Vector bundles induced from the tangent bundle. The cotangent bundle is the union of
cotangent spaces T*M = UpenT,; M with appropriate structure of a 2n-manifold. Taking tensor
products of tangent and cotangent spaces, one can consider the tensor product of tangent and
cotangent bundles, for example,

T"M@T*M = | ) TyM @ T; M.
peM

In general, a triple (FE, M,7) of differentiable manifolds F and M, and a differentiable map
m: FE — M is called a vector bundle on M if it satisfies the following:

e T is a surjection.
o For each p € M, E, := 7 !(p) is endowed with a structure of N-dimensional vector space.

o There exists an open cover {U,} on M and a family {@, } of diffeomorphisms @, : 7= H(U) —
U x RY such that ¢u g, : E, — {p} x RY ~R¥ is a linear map for each p.

The tangent bundle T'M, the cotangent bundle T*M and the tensor product T*M & T* M are
vector bundles on M.

A section of a vector bundle (F, M, ) (often denoted by E for simplicity) is a differentiable
map &: M — E satisfying m o & = idp;. The set of sections of a vector bundle E is denoted by
I'(E). In particular, the set of vector fields is denoted by

X(M) = [(TM).

In general I'(E) is a structure of infinite dimensional vector space. Moreover, it is also considered
as an F(M)-module.
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Riemannian metrics A bilinear form on M is a section of the vector bundle

S(T"M @T*M) = Upens S(Ty M @ Ty M),
S(TyM @ T; M) = { (symmetric) bilinear forms on 7, M },
where
STyM Ty M) ={Q e TyMT,M;Q(X,Y)=Q(Y,X) for X,)Y € T,M}
={Q: T,M x T,M — R;bilinear, andQ(X,Y) = Q(Y, X) for X,Y € T,M}
Lemma 1.1. A map Q: p — Qp, where Qp is a bilinear form on T,M, is a smooth section of

S(T*M @ T*M) if and only if
M>p— Qp(X,,Yy) €R
for each pair of smooth vector fields X, Y € X(M).
Definition 1.2. A Riemannian metric (resp. pseudo Riemannian metric) is a section g € I'(S(T* M ®
T*M)) such that the quadratic form g, on T,M is positive definite inner product (resp. non-

degenerate inner product) on T,M. A pair (M,g) of a manifold M and a (pseudo) Riemannian
metric g is called a (pseudo) Riemannian manifold.

Let (M, g) be a Riemannian manifold. Then, on a local coordinate system (U, (z7)) on M, g is

expressed as
n
- , o 0
9= Z gijde* @ dx’  gij =g <8:ci’ (%J) .
ij=1
Moreover, each g;; is a smooth function on U, and the matrix (g;;) is a positive definite symmetric
matrix. We often abbreviate g(X,Y) by (X,Y).
Fact 1.3. There exists a Riemannian metric on an arbitrary (paracompact) manifold.

Example 1.4 (Euclidean spaces). As a differentiable n-manifold, the tangent space T,R"™ of R™
can be identified with (the vector space) R™. More precisely, let (x!,...,2™) be the canonical
coordinate system of R™. Then

i
T,R">X =Y X/ (a;w) (XY XM eR”
p

is the identification map of T,R™ with R".

Then the Euclidean inner product of R™ can be regarded as an inner product of 7),R"™. Hence
we obtain the canonical Riemannian metric go on R™. Under the canonical coordinate system
(xl,...,2"), go is written as

go = dz' @ da' 4+ da® @ da® + - + dz" @ dx" = (dz')? + (d2z®)? + - - + (dz™)%

Example 1.5 (Submanifolds). Let N be a manifold, and M C N a submanifold. Then for each
p € M, the tangent space 1, M is a linear subspace of T,/N. If a Riemannian metric g on NV is
given, the restriction of g on T, M gives a Riemannian metric on M. Such a metric is called the
metric on M induced by g, and denoted by g|as.

Example 1.6 (Spheres). Let k = ¢? be a positive number and set

n+1

. 1
Sn k) = — 1 o n+1 Rn+1 — 7\2 —
(k) r=(r,...2"")€ | (z,z) Z(w) w0
j=1
where (z!,...,2"*1) is the standard coordinate system on R"*!. Then one can easily see that

S™(k) is a submanifold of R"*1, and hence, the canonical metric gy of R"*! induces a Riemannian
metric on S™(k). In particular, the metric on S™ = S™(1) induced from the Euclidean metric is
called the canonical metric on S™.
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Example 1.7 (The Lorentz Minkowski space). An inner product
(X,7), = -XY + X'yt .. X"y
X=(X" X' . X", Y=Y ... v"
on R™1 of signature (n, 1) is called the Minkowski inner product , and the pair RIT! .= (R ()
the Minkowski vector space. A vector X € R\ {0} is said to be space-like, light-like or null,
and time-like , if (X, X), >0, (X,X), =0, and (X, X), <0, respectively.
In the same way as the Euclidean space case, the inner product (, ), induces the structure

of pseudo Riemannian metric g;, on R"*!'. We call the pseudo Riemannian manifold R?'H =
(R™+1, g1) the Lorentz-Minkowski space, or Minkowski space. The metric gy, is expressed as

g1 = —da’ @ da® + da' @ da' 4 -+ da" @ da" = —(dx®)? + (da')? + -+ (da™)?
under the canonical coordinate system (z9,..., z").
Example 1.8 (Hyperbolic spaces). First, we claim (cf. Exercise 1-2)

Let v be a time-like vector on the Minkowski vector space R7™!. Then its orthogonal
complement {X | (X,v); = 0} is an n-dimensional subspace of R} consists of space-
like vectors and 0.

For a negative constant k = —c? (c € R\ {0}), we set
1
H"(—c?) := {w =(2°...,2") e R | (z,2), = ~ 2T > 0} .
Then one can easily see that H™(—c?) is a connected submanifold of R},
For each point & € H™, the tangent space of H"(—c?) is expressed as
TxH"(—c*) = {v e L"""| (z,v), =0}.
In other words, the tangent space is an orthogonal complement of the position vector (which is
time-like). Then T H™(—c?) consists of space-like vectors, that is, the restriction g, to the tangent
space of H™(—c?) is positive definite. Hence it induces the Riemannian metric gz. The Riemannian
manifold (H™(—c?), gg) (vesp. (H™ = H"(—1),gg)) is called the hyperbolic space.
Ezercises

1-1 Let U C R™ be a domain and g a Riemannian metric on U. Show that

(1) There exists an n-tuple of vector fields {ey,...,e,} such that

1 (i=13)
€;,.e;) = (51' = .
glenes) ! { 0 (otherwise)
(2) Take another n-tuple {v1,...,v,} satisfying g(v;,v;) = d;;. Then there exists a matrix-

valued function

©:U — O(n) le1,...,ex] = [v1,...,0,]0.

1-2 Let RY™ = (R"*!,(, ),) be the Minkowski vector space. Show that if v € R}*" satisfies
(v,v), = —1, the orthogonal complement

vt = {xz e R (v,2), =0}

is an n-dimensional space-like subspace of R;”H.



