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2 Riemannian Connection

2.1 Preliminal materials

Lie brackets Let M be an n-dimensional manifold and denote by F(M) and X(M) the set of
smooth function and the set of smooth vector fields on M , respectively. A vector field X ∈ X(M)
can be considered as a differential operator acting on F(M) as (Xf)(P) = XPf . By definition it
satisfies the Leibniz rule

(2.1) X(fg) = f(Xg) + g(Xf) (X ∈ X(M), f, g ∈ F(M)).

For two vector fields X, Y ∈ X(M), set

(2.2) [X,Y ] : F(M) 3 f 7−→ X(Y f)− Y (Xf) ∈ F(M).

Then [X,Y ] also satisfies the Leibnitz rule (2.1), and gives a vector field on M . The map

[ , ] : X(M)× X(M) 3 (X,Y ) 7→ [X,Y ] ∈ X(M)

is called the Lie bracket on X(M). One can easily show that the product [ , ] is bilinear, skew
symmetric and satisfies the Jacobi identity

(2.3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

that is, (X(M), [ , ]) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that

(2.4) [fX, Y ] = f [X,Y ]− (Y f)X, [X, fY ] = f [X,Y ] + (Xf)Y (X,Y ∈ X(M), f ∈ F(M)).

The Lie bracket can be considered a kind of “integrability condition” as follows:
Fact 2.1. Let (X1, . . . , Xn) be an n-tuple of vector fields on n-dimensional manifolds, which is
linearly independent in TpM for each p ∈ M . Then existence of local coordinate system (x1, . . . , xn)
around p such that ∂/∂xj = Xj (j = 1, . . . , n) is equivalent to that [Xj , Xk] = 0 holds for all j,
k = 1, . . . , n.

Tensors. A section ω ∈ Γ (T ∗M) of the cotangent bundle T ∗M is called a covariant 1-tensor or
a 1-form. A one form ω induces a linear map

(2.5) ω : X(M) 3 X 7−→ ω(X) ∈ F(M), where ω(X)(p) = ωp(Xp)

By definition, it holds that

(2.6) ω(fX) = fω(X) (f ∈ F(M), X ∈ X(M)).

Lemma 2.2. A linear map ω : X(M) → F(M) is a 1-form if and only if (2.6) holds.
Proof. The “only if” part is trivial by definition. Assume a linear map ω : X(M) → F(M) satisfies
(2.6). In fact, under a local coordinate system (x1, . . . , xn) around p ∈ M ,

ω(X)(p) = ω

 n∑
j=1

Xj ∂

∂xj

 (p) =

n∑
j=1

Xj(p)ω

(
∂

∂xj

)
p

,

X =

n∑
j=1

Xj ∂

∂xj
.


holds. In other words, ω(X)(p) depend only on Xp. Hence ω induces a map ωp : TpM → R.

Similarly, a covariant two tensor α ∈ Γ (T ∗M ⊗ T ∗M) induces a bilinear map α : X(M) ×
X(M) → F(M). By the same reason as Lemma 2.2, we have
Lemma 2.3. A bilinear map α : X(M)× X(M) → F(M) is a (0, 2)-tensor if and only if

α(fX, Y ) = α(X, fY ) = fα(X,Y ) (f ∈ F(M), X, Y ∈ X(M))

holds.
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The Exterior derivative. We denote the set of skew-symmetric covariant two tensors by

∧2(M) :=
{
ω ∈ Γ

(
T ∗M ⊗ T ∗M

)
; ω(X,Y ) = −ω(Y,X)

}
.

An element ω ∈ ∧2(M) is called a 2-form . Under such a context, the set of 1-forms and the set
of smooth functions are denoted by

∧1(M) := Γ (T ∗M), ∧0 := F(M).

The exterior product α ∧ β ∈ ∧2(M) of two 1-forms α, β ∈ ∧1(M) is defined as

(2.7) (α ∧ β)(X,Y ) := α(X)β(Y )− α(Y )β(X).

Under a local coordinate system (x1, . . . , xn), a one form α and a two form ω are expressed as

α =

n∑
j=1

αj dx
j , ω =

∑
15i<j5n

ωij dx
i ∧ dxj ,

where αj (j = 1, . . . , n) and ωij (1 5 i < j 5 n) are smooth functions in (x1, . . . , xn). By
Lemma 2.3 and the property (2.4) of the Lie brackets, we have

Lemma 2.4. For a function f ∈ F(M) = ∧0(M) and a 1-form α ∈ ∧1(M),

df : X(M) 3 X 7→ df(X) = Xf ∈ F(M),

dα : X(M)× X(M) 3 (X,Y ) 7→ Xα(Y )− Y α(X)− α([X,Y ]) ∈ F(M)

are a 1-form and a 2-form, respectively.

Definition 2.5. For a function f and a one form α, df and dα are called the exterior derivatives
of f and α, respectively.

2.2 The Riemannian connection.

Let (M, g) be an n-dimensional (pseudo) Riemannian manifold, and denote by 〈 , 〉 the inner
product induced by g.

Lemma 2.6. A map [ : TpM 3 X 7→ X[ = 〈X, ·〉 ∈ T ∗
pM is a linear isomorphism.

Proof. The linearity is trivial. Since g = 〈 , 〉 is non-degenerate,

Ker [ = {X ∈ TpM ; 〈X,Y 〉 = 0 for all Y ∈ TpM} = {0}.

The conclusion follows noticing that both TpM and T ∗
pM are n-dimensional.

We denote by #: α 7→ α# the inverse of [. Then # and [ induces an isomorphism between
X(M) and ∧1(M).

Definition, existence and uniqueness.

Lemma 2.7. There exists the unique bilinear map ∇ : X(M)× X(M) 3 (X,Y ) 7→ ∇XY ∈ X(M)
satisfying

(2.8) ∇XY −∇Y X = [X,Y ], X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈X,∇XZ〉 (X,Y, Z ∈ X(M))



7 MTH.B502; Sect. 2

Proof. Assume such a ∇ exists. Then for X, Y , Z ∈ X(M),

〈∇XY, Z〉 = X 〈Y, Z〉 − 〈Y,∇XZ〉 = X 〈Y, Z〉 − 〈Y,∇ZX + [X,Z]〉
= X 〈Y, Z〉 − 〈Y, [X,Z]〉 − 〈Y,∇ZX〉 = X 〈Y, Z〉 − 〈Y, [X,Z]〉 − Z 〈Y,X〉+ 〈∇ZY,X〉
= X 〈Y, Z〉 − Z 〈Y,X〉 − 〈Y, [X,Z]〉+ 〈∇Y Z,X〉+ 〈[Z, Y ], X〉
= X 〈Y, Z〉 − Z 〈Y,X〉 − 〈Y, [X,Z]〉+ 〈[Z, Y ], X〉+ Y 〈Z,X〉 − 〈Z,∇Y X〉
= X 〈Y, Z〉+ Y 〈Z,X〉 − Z 〈Y,X〉 − 〈Y, [X,Z]〉+ 〈[Z, Y ], X〉 − 〈Z,∇XY 〉+ 〈Z, [Y,X]〉 .

Then

(2.9) 2 〈∇XY, Z〉 = X 〈Y, Z〉+ Y 〈Z,X〉 − Z 〈Y,X〉
− 〈Y, [X,Z]〉+ 〈[Z, Y ], X〉 − 〈Z, [Y,X]〉 =: 2C(X,Y, Z).

Hence, non-degeneracy of 〈 , 〉 implies the uniqueness. Moreover, setting ∇XY :=
(
C(X,Y, ∗)

)#,
we have the existence.

Definition 2.8. The map ∇ in Lemma 2.7 is called the Riemannian connection or the Levi-Civita
connection of (M, g).

Lemma 2.9. The Riemannian connection ∇ satisfies

(2.10) ∇fXY = f∇XY, ∇X(fY ) = (Xf)Y + f∇XY.

Proof. The conclusion follows from (2.4) and (2.9).

Remark 2.10. A bilinear map ∇ : X(M) × X(M) → X(M) satisfying (2.10) is called a linear
connection or an affine connection.
Remark 2.11. By Lemmas 2.9 and 2.2, X 7→ ∇XY determines a one form.

Orthonormal frames.

Definition 2.12. Let U ⊂ M be a domain of M . An n-tuple of vector fields {e1, . . . , en} on U
is called an orthonormal frame on U if 〈ei, ej〉 = δij . It is said to be positive if M is oriented and
{ej} is compatible to the orientation on M .

Exercise 1-1 assert that for each p ∈ M , there exists a neighborhood U of p which admits an
orthonormal frame on U . Moreover, we have

Lemma 2.13. Let {ej} and {vj} be two orthonormal frames on U ⊂ M . Then there exists a
smooth map

(2.11) Θ : U −→ O(n) such that [e1, . . . , en] = [v1, . . . ,vn]Θ.

Moreover, if {ej} and {vj} determines the common orientation, Θ is valued on SO(n).

The map Θ in Lemma 2.13 is called a gauge transformation.
For an orthonormal frame {ej} on U , we denote by {ωj}j=1,...,n the dual frame of {ej}, that

is, ωj ∈ ∧1(U) such that

ωj(ek) = δjk =

{
1 (j = k)

0 (otherwise).

In other words, ωj(X) = 〈ej , X〉.
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Lemma 2.14. Two orthonormal frames {ej} and {vj} are related as (2.11). Then their duals
{ωj} and {λj} satisfy λ1

...
λn

 = Θ

ω1

...
ωn

 .

Proof. λ1

...
λn

 (e1, . . . , en) =

λ1

...
λn

 (v1, . . . ,vn)Θ = Θ = Θ

ω1

...
ωn

 (e1, . . . , en).

Connection forms.
Definition 2.15. The connection form with respect to an orthonormal frame {ej} is a n×n-matrix
valued one form Ω on U defined by

Ω =


ω1
1 ω1

2 . . . ω1
n

ω2
1 ω2

2 . . . ω2
n

...
...

. . .
...

ωn
1 ωn

2 . . . ωn
n

 , ωk
j := 〈∇ej , ek〉 ∈ ∧1(U).

By definition, we have ∇ej =
∑n

k=1 ω
k
j ek, that is, ∇[e1, . . . , en] = [e1, . . . , en]Ω.

Lemma 2.16. ωk
j = −ωj

k.

Proof. ωk
j = 〈∇ej , ek〉 = d 〈ej , ek〉 − 〈ej ,∇ek〉 = −ωj

k.

Lemma 2.17. dωi =
∑n

l=1 ω
l ∧ ωi

l .
Proof.

dωi(ej , ek) = ejω
i(ek)− ekω

i(ej)− ωi([ej , ek]) = −ωi([ej , ek])

= −ωi(∇ej
ek −∇ek

ej) = −
〈
∇ej

ek −∇ek
ej , ei

〉
= −ωi

k(ej) + ωi
j(ek)

=

n∑
l=1

(
−ωi

l(ej)ω
l(ek) + ωi

l(ek)ω
l(ej)

)
=

n∑
l=1

ωl ∧ ωi
l(ej , ek).

Exercises

2-1 Let {ej} and {vj} be two orthonormal frames on a domain U of a Riemannian n-manifold
M , which are related as (2.11). Show that the connection forms Ω of {ej} and Λ of {vj}
satisfy Ω = Θ−1ΛΘ +Θ−1dΘ.

2-2 Let R3
1 be the 3-dimensional Lorentz-Minkowski space and let H2(−c2) the hyperbolic 2-space

(i.e. the hyperbolic plane) as defined in Example 1.8. Verify that

(u, v) 7→
(
1

c
cosh cu,

cos v

c
sinh cu,

sin v

c
sinh cu

)
gives a local coordinate system on U := H2(−c2) \ {(1/c, 0, 0)}, and

e1 := (sinh cu, cos v cosh cu, sin v cosh cu), e2 := (0,− sin v, cos v)

forms a orthonormal frame on U .


