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2 Riemannian Connection

2.1 Preliminal materials

Lie brackets Let M be an n-dimensional manifold and denote by F(M) and X(M) the set of
smooth function and the set of smooth vector fields on M, respectively. A vector field X € X(M)
can be considered as a differential operator acting on F(M) as (X f)(P) = Xpf. By definition it
satisfies the Leibniz rule

(2.1) X(fg) = f(Xg)+9(Xf) (X eX(M),fgeF(M)).
For two vector fields X, Y € X(M), set
(2.2) [X,Y]: F(M)> f— X(Yf)=Y(Xf) e F(M).

Then [X, Y] also satisfies the Leibnitz rule (2.1), and gives a vector field on M. The map
[, ]: X(M) xX(M)> (X,Y)— [X,Y] € X(M)

is called the Lie bracket on X(M). One can easily show that the product [, ] is bilinear, skew
symmetric and satisfies the Jacobi identity
(2.3) (X, IV, 2| + [V, [Z, X]] + [2,[X, Y]] = 0,

that is, (X(M), ], ]) is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that
24) XY= fIXY] - (YNX, [X fY]=[fIXY]+(XN)Y (XY € X(M), f € F(M)).
The Lie bracket can be considered a kind of “integrability condition” as follows:

Fact 2.1. Let (X1,...,X,) be an n-tuple of vector fields on n-dimensional manifolds, which is
linearly independent in T, M for eachp € M. Then existence of local coordinate system (... 2")
around p such that 0/0x’ = X; (j = 1,...,n) is equivalent to that [X;, Xx] = 0 holds for all j,
k=1,...,n.

Tensors. A section w € I'(T*M) of the cotangent bundle T*M is called a covariant 1-tensor or
a 1-form. A one form w induces a linear map

(2.5) w: X(M) > X — w(X) € F(M), where  w(X)(p) = wp(Xp)
By definition, it holds that
(2.6) w(fX) = fw(X) (fe F(M), X € X(M)).

Lemma 2.2. A linear map w: X(M) — F(M) is a 1-form if and only if (2.6) holds.
Proof. The “only if” part is trivial by definition. Assume a linear map w: X(M) — F(M) satisfies

(2.6). In fact, under a local coordinate system (x!,...,2") around p € M,
w(X)(p) = w i:X"i (p):zn:Xj(p)w 9 X:ixjﬂ_
= ox7 = ox1 ) | = 0x7

holds. In other words, w(X)(p) depend only on X,,. Hence w induces a map w,: T, M — R. O

Similarly, a covariant two tensor o € I'(T*M ® T*M) induces a bilinear map a: X(M) x
X(M) — F(M). By the same reason as Lemma 2.2, we have

Lemma 2.3. A bilinear map a: X(M) x X(M) — F(M) is a (0, 2)-tensor if and only if
a(fX,Y) =a(X, fY) = fa(X,Y)  (f € F(M),X,Y € X(M))

holds.
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The Exterior derivative. We denote the set of skew-symmetric covariant two tensors by
NM)={wel(T"MT*M); w(X,Y)=-w(Y,X)}.

An element w € A?(M) is called a 2-form . Under such a context, the set of 1-forms and the set
of smooth functions are denoted by

AY (M) == [(T*M), A0 = F(M).
The exterior product a A B € A2(M) of two 1-forms «, 3 € AL(M) is defined as

(2.7) (@A B)(X,Y) = a(X)B(Y) — a(Y)B(X).

i .. W w X
Under a local coordinate system (z!,...,2"), a one form o and a two form w are expressed as

n
_ . Aed — R 3 J
a—g o da?, w = E wij dx' A da?,
Jj=1 15i<jS<n

where «; (j = 1,...,n) and w;; (1 £ i < j < n) are smooth functions in (z',...,2"). By
Lemma 2.3 and the property (2.4) of the Lie brackets, we have

Lemma 2.4. For a function f € F(M) = A°(M) and a 1-form a € A1 (M),

df: X(M) > X v df (X) = Xf € F(M),
da: X(M) x X(M) 3 (X,Y) = Xa(Y) — Ya(X) — a([X,Y]) € F(M)

are a 1-form and a 2-form, respectively.

Definition 2.5. For a function f and a one form «, df and da are called the exterior derivatives
of f and «, respectively.

2.2 The Riemannian connection.

Let (M,g) be an n-dimensional (pseudo) Riemannian manifold, and denote by (, ) the inner
product induced by g.

Lemma 2.6. A mapb: T,M > X — X° = (X,-) € Ty M is a linear isomorphism.
Proof. The linearity is trivial. Since g = (, ) is non-degenerate,
Kerb={X e T,M; (X, Y)=0forallY € T,M} = {0}.
The conclusion follows noticing that both T, M and T;; M are n-dimensional. O

We denote by #: a + o the inverse of b. Then # and b induces an isomorphism between
X(M) and AL (M).
Definition, existence and uniqueness.

Lemma 2.7. There exists the unique bilinear map V: X(M) x X(M) 3 (X,Y) = VxY € X(M)
satisfying

(2.8)  VxY-VyX=[X,Y], X(,2)=(VxY,2)+(X,VxZ) (X,Y,ZeX(M))
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Proof. Assume such a V exists. Then for X, Y, Z € X(M),

(VxY,Z) =X (Y, Z) - (Y, VxZ)=X (Y, Z) - (Y, VzX + [X, Z])
=X(Y,2) = (Y,[X,Z]) - (Y, VzX) = X (Y, Z) = (Y, [X, Z]) - Z(Y, X) + (VzY, X)
=X(Y,2) - Z{Y,X) - (V,[X,Z]) + (Vv Z, X) + ([Z2,Y], X)
=X (Y, 2)-Z{Y,X) - (Y,[X, Z]) +([2,Y], X) + Y (Z,X) — (2, Vy X)
=X, 2)+Y(Z,X)-Z(Y,X)—(Y,[X,Z)) +{[Z, Y], X) —(Z,VxY)+ (Z,]Y, X]).
Then

(2.9) 2(VxY,Z) =X (Y,Z)+ Y (Z,X)— Z (Y, X)
-V [X, Z]) + (2, Y], X) = (Z,[Y, X]) =: 20 (X, Y, Z).

Hence, non-degeneracy of (, ) implies the uniqueness. Moreover, setting VxY := (C(X Y, *))#,
we have the existence. O

Definition 2.8. The map V in Lemma 2.7 is called the Riemannian connection or the Levi-Civita
connection of (M, g).

Lemma 2.9. The Riemannian connection V satisfies
(2.10) VixY = fVxY, Vx(fY)=(Xf)Y + fVxY.
Proof. The conclusion follows from (2.4) and (2.9). O

Remark 2.10. A bilinear map V: X(M) x X(M) — X(M) satisfying (2.10) is called a linear
connection or an affine connection.

Remark 2.11. By Lemmas 2.9 and 2.2, X — VxY determines a one form.

Orthonormal frames.

Definition 2.12. Let U C M be a domain of M. An n-tuple of vector fields {e;,...,e,} on U
is called an orthonormal frame on U if (e;, e;) = 0;;. It is said to be positive if M is oriented and
{e;} is compatible to the orientation on M.

Exercise 1-1 assert that for each p € M, there exists a neighborhood U of p which admits an
orthonormal frame on U. Moreover, we have

Lemma 2.13. Let {e;} and {v;} be two orthonormal frames on U C M. Then there exists a
smooth map

(2.11) ©:U — O(n) such that  [e1,...,ey] = [v1,...,v,]6.
Moreover, if {e;} and {v;} determines the common orientation, © is valued on SO(n).

The map © in Lemma 2.13 is called a gauge transformation.
For an orthonormal frame {e;} on U, we denote by {w’};—1 ., the dual frame of {e;}, that

is, w/ € AY(U) such that
_ (1 (j=F)
J = 5j =
w’(ex) k {0 (otherwise).

In other words, w’ (X) = (e;, X).
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Lemma 2.14. Two orthonormal frames {e;} and {v;} are related as (2.11). Then their duals
{wi} and {N} satisfy

AL wl
| =e
A" w"
Proof.
AL AL wl
Slenen) = | (0, 0,)0=0=0| : |(e1,...,e,). O
ATL )\n w'VL

Connection forms.

Definition 2.15. The connection form with respect to an orthonormal frame {e;} is a n x n-matrix
valued one form (2 on U defined by

wi wi o Wi
W owi o w2 . .
nN=1. o 1, wj = (Vej,ex) € A (U).
Wl wy L wy
By definition, we have Ve; =Y _; wfek, that is, V]e1,...,en] = [€1,...,en]82.
Lemma 2.16. w;“ = fwi.
Proof. w;? = (Vej,er) =d(e;,e;) — (e;,Vey) = —wi.
O
Lemma 2.17. dw’ =" w' Aw}.
Proof.
dw'(ej, ex) = ejw'(er) — exw'(e)) — w'([ej, ex]) = —w'([ej, ex))
= —w'(Ve,er — Ve, e;) = — (Ve,ex — Ve, €, €;) = —wj.(e;) + w'(er)
n n
=) (—wi(ej)w!(er) + wiler)w'(e;)) = > _w' Awj(e;, ex). O
=1 =1
FEzercises

2-1 Let {e;} and {v;} be two orthonormal frames on a domain U of a Riemannian n-manifold
M, which are related as (2.11). Show that the connection forms (2 of {e;} and A of {v;}
satisfy 2 = 07140 + 671d0O.

2-2 Let R} be the 3-dimensional Lorentz-Minkowski space and let H2(—c?) the hyperbolic 2-space
(i.e. the hyperbolic plane) as defined in Example 1.8. Verify that

1
(u,v) — ( cosh cu, cosy
c

. v .
sinh cu, sinh cu)

gives a local coordinate system on U := H?(—c?)\ {(1/c,0,0)}, and
e := (sinh cu, cos v cosh cu, sin v cosh cu), ez := (0, —sinv, cosv)

forms a orthonormal frame on U.



