2 Riemannian Connection

2.1 Preliminal materials

Lie brackets Let M be an n-dimensional manifold and denote by $\mathcal{F}(M)$ and $\mathfrak{X}(M)$ the set of smooth function and the set of smooth vector fields on M, respectively. A vector field $X \in \mathfrak{X}(M)$ can be considered as a differential operator acting on $\mathcal{F}(M)$ as $(Xf)(P) = X_P f$. By definition it satisfies the Leibniz rule

(2.1)
$$X(fg) = f(Xg) + g(Xf) \qquad (X \in \mathfrak{X}(M), f, g \in \mathcal{F}(M)).$$

For two vector fields $X, Y \in \mathfrak{X}(M)$, set

(2.2)
$$[X,Y]: \mathcal{F}(M) \ni f \longmapsto X(Yf) - Y(Xf) \in \mathcal{F}(M)$$

Then [X, Y] also satisfies the Leibnitz rule (2.1), and gives a vector field on M. The map

$$[,]:\mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X,Y) \mapsto [X,Y] \in \mathfrak{X}(M)$$

is called the *Lie bracket* on $\mathfrak{X}(M)$. One can easily show that the product [,] is bilinear, skew symmetric and satisfies the *Jacobi identity*

(2.3)
$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = \mathbf{0},$$

that is, $(\mathfrak{X}(M), [,])$ is a Lie algebra (of infinite dimension). By the Leibniz rule, it holds that

$$(2.4) \quad [fX,Y] = f[X,Y] - (Yf)X, \quad [X,fY] = f[X,Y] + (Xf)Y \qquad (X,Y \in \mathfrak{X}(M), f \in \mathcal{F}(M)).$$

The Lie bracket can be considered a kind of "integrability condition" as follows:

Fact 2.1. Let (X_1, \ldots, X_n) be an n-tuple of vector fields on n-dimensional manifolds, which is linearly independent in T_pM for each $p \in M$. Then existence of local coordinate system (x^1, \ldots, x^n) around p such that $\partial/\partial x^j = X_j$ $(j = 1, \ldots, n)$ is equivalent to that $[X_j, X_k] = \mathbf{0}$ holds for all j, $k = 1, \ldots, n$.

Tensors. A section $\omega \in \Gamma(T^*M)$ of the cotangent bundle T^*M is called a *covariant* 1-*tensor* or a 1-*form*. A one form ω induces a linear map

(2.5)
$$\omega : \mathfrak{X}(M) \ni X \longmapsto \omega(X) \in \mathcal{F}(M), \quad \text{where} \quad \omega(X)(p) = \omega_p(X_p)$$

By definition, it holds that

(2.6)
$$\omega(fX) = f\omega(X) \qquad (f \in \mathcal{F}(M), X \in \mathfrak{X}(M)).$$

Lemma 2.2. A linear map $\omega \colon \mathfrak{X}(M) \to \mathcal{F}(M)$ is a 1-form if and only if (2.6) holds.

Proof. The "only if" part is trivial by definition. Assume a linear map $\omega \colon \mathfrak{X}(M) \to \mathcal{F}(M)$ satisfies (2.6). In fact, under a local coordinate system (x^1, \ldots, x^n) around $p \in M$,

$$\omega(X)(p) = \omega\left(\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}\right)(p) = \sum_{j=1}^{n} X^{j}(p)\omega\left(\frac{\partial}{\partial x^{j}}\right)_{p}, \qquad \left(X = \sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}\right)_{p}$$

holds. In other words, $\omega(X)(p)$ depend only on X_p . Hence ω induces a map $\omega_p: T_pM \to \mathbb{R}$. \Box

Similarly, a covariant two tensor $\alpha \in \Gamma(T^*M \otimes T^*M)$ induces a bilinear map $\alpha \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{F}(M)$. By the same reason as Lemma 2.2, we have

Lemma 2.3. A bilinear map $\alpha \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{F}(M)$ is a (0,2)-tensor if and only if

$$\alpha(fX,Y) = \alpha(X,fY) = f\alpha(X,Y) \qquad (f \in \mathcal{F}(M), X, Y \in \mathfrak{X}(M))$$

holds.

^{21.} June, 2022. Revised: 05. July, 2022)

The Exterior derivative. We denote the set of skew-symmetric covariant two tensors by

$$\wedge^2(M) := \left\{ \omega \in \Gamma(T^*M \otimes T^*M) \, ; \, \omega(X,Y) = -\omega(Y,X) \right\}.$$

An element $\omega \in \wedge^2(M)$ is called a 2-form . Under such a context, the set of 1-forms and the set of smooth functions are denoted by

$$\wedge^1(M) := \Gamma(T^*M), \qquad \wedge^0 := \mathcal{F}(M).$$

The exterior product $\alpha \wedge \beta \in \wedge^2(M)$ of two 1-forms $\alpha, \beta \in \wedge^1(M)$ is defined as

(2.7)
$$(\alpha \wedge \beta)(X,Y) := \alpha(X)\beta(Y) - \alpha(Y)\beta(X).$$

Under a local coordinate system (x^1, \ldots, x^n) , a one form α and a two form ω are expressed as

$$\alpha = \sum_{j=1}^{n} \alpha_j \, dx^j, \qquad \omega = \sum_{1 \le i < j \le n} \omega_{ij} \, dx^i \wedge dx^j,$$

where α_j (j = 1, ..., n) and ω_{ij} $(1 \leq i < j \leq n)$ are smooth functions in $(x^1, ..., x^n)$. By Lemma 2.3 and the property (2.4) of the Lie brackets, we have

Lemma 2.4. For a function $f \in \mathcal{F}(M) = \wedge^0(M)$ and a 1-form $\alpha \in \wedge^1(M)$,

$$df: \mathfrak{X}(M) \ni X \mapsto df(X) = Xf \in \mathcal{F}(M), d\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X, Y) \mapsto X\alpha(Y) - Y\alpha(X) - \alpha([X, Y]) \in \mathcal{F}(M)$$

are a 1-form and a 2-form, respectively.

Definition 2.5. For a function f and a one form α , df and $d\alpha$ are called the *exterior derivatives* of f and α , respectively.

2.2 The Riemannian connection.

Let (M,g) be an *n*-dimensional (pseudo) Riemannian manifold, and denote by \langle , \rangle the inner product induced by g.

Lemma 2.6. A map $\flat : T_pM \ni X \mapsto X^{\flat} = \langle X, \cdot \rangle \in T_p^*M$ is a linear isomorphism.

Proof. The linearity is trivial. Since $g = \langle , \rangle$ is non-degenerate,

$$\operatorname{Ker} \flat = \{ X \in T_p M ; \langle X, Y \rangle = 0 \text{ for all } Y \in T_p M \} = \{ \mathbf{0} \}.$$

The conclusion follows noticing that both T_pM and T_p^*M are *n*-dimensional.

We denote by $\#: \alpha \mapsto \alpha^{\#}$ the inverse of \flat . Then # and \flat induces an isomorphism between $\mathfrak{X}(M)$ and $\wedge^1(M)$.

Definition, existence and uniqueness.

Lemma 2.7. There exists the unique bilinear map $\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X,Y) \mapsto \nabla_X Y \in \mathfrak{X}(M)$ satisfying

(2.8)
$$\nabla_X Y - \nabla_Y X = [X, Y], \qquad X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle X, \nabla_X Z \rangle \qquad (X, Y, Z \in \mathfrak{X}(M))$$

Proof. Assume such a ∇ exists. Then for $X, Y, Z \in \mathfrak{X}(M)$,

$$\begin{split} \langle \nabla_X Y, Z \rangle &= X \langle Y, Z \rangle - \langle Y, \nabla_X Z \rangle = X \langle Y, Z \rangle - \langle Y, \nabla_Z X + [X, Z] \rangle \\ &= X \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - \langle Y, \nabla_Z X \rangle = X \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \langle Y, X \rangle + \langle \nabla_Z Y, X \rangle \\ &= X \langle Y, Z \rangle - Z \langle Y, X \rangle - \langle Y, [X, Z] \rangle + \langle \nabla_Y Z, X \rangle + \langle [Z, Y], X \rangle \\ &= X \langle Y, Z \rangle - Z \langle Y, X \rangle - \langle Y, [X, Z] \rangle + \langle [Z, Y], X \rangle + Y \langle Z, X \rangle - \langle Z, \nabla_Y X \rangle \\ &= X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle Y, X \rangle - \langle Y, [X, Z] \rangle + \langle [Z, Y], X \rangle + \langle [Z, Y], X \rangle - \langle Z, \nabla_X Y \rangle + \langle Z, [Y, X] \rangle . \end{split}$$

Then

$$(2.9) \quad 2 \langle \nabla_X Y, Z \rangle = X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle Y, X \rangle - \langle Y, [X, Z] \rangle + \langle [Z, Y], X \rangle - \langle Z, [Y, X] \rangle =: 2C(X, Y, Z).$$

Hence, non-degeneracy of \langle , \rangle implies the uniqueness. Moreover, setting $\nabla_X Y := (C(X, Y, *))^{\#}$, we have the existence.

Definition 2.8. The map ∇ in Lemma 2.7 is called the *Riemannian connection* or the *Levi-Civita connection* of (M, g).

Lemma 2.9. The Riemannian connection ∇ satisfies

(2.10)
$$\nabla_{fX}Y = f\nabla_XY, \quad \nabla_X(fY) = (Xf)Y + f\nabla_XY.$$

Proof. The conclusion follows from (2.4) and (2.9).

Remark 2.10. A bilinear map $\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ satisfying (2.10) is called a *linear* connection or an affine connection.

Remark 2.11. By Lemmas 2.9 and 2.2, $X \mapsto \nabla_X Y$ determines a one form.

Orthonormal frames.

Definition 2.12. Let $U \subset M$ be a domain of M. An *n*-tuple of vector fields $\{e_1, \ldots, e_n\}$ on U is called an *orthonormal frame* on U if $\langle e_i, e_j \rangle = \delta_{ij}$. It is said to be *positive* if M is oriented and $\{e_i\}$ is compatible to the orientation on M.

Exercise 1-1 assert that for each $p \in M$, there exists a neighborhood U of p which admits an orthonormal frame on U. Moreover, we have

Lemma 2.13. Let $\{e_j\}$ and $\{v_j\}$ be two orthonormal frames on $U \subset M$. Then there exists a smooth map

(2.11)
$$\Theta: U \longrightarrow O(n)$$
 such that $[\boldsymbol{e}_1, \dots, \boldsymbol{e}_n] = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] \Theta.$

Moreover, if $\{e_j\}$ and $\{v_j\}$ determines the common orientation, Θ is valued on SO(n).

The map Θ in Lemma 2.13 is called a *gauge transformation*.

For an orthonormal frame $\{e_j\}$ on U, we denote by $\{\omega^j\}_{j=1,\dots,n}$ the dual frame of $\{e_j\}$, that is, $\omega^j \in \wedge^1(U)$ such that

$$\omega^{j}(\boldsymbol{e}_{k}) = \delta^{j}_{k} = \begin{cases} 1 & (j=k) \\ 0 & (\text{otherwise}). \end{cases}$$

In other words, $\omega^j(X) = \langle \boldsymbol{e}_j, X \rangle$.

Lemma 2.14. Two orthonormal frames $\{e_j\}$ and $\{v_j\}$ are related as (2.11). Then their duals $\{\omega^j\}$ and $\{\lambda^j\}$ satisfy

$$\begin{pmatrix} \lambda^1 \\ \vdots \\ \lambda^n \end{pmatrix} = \Theta \begin{pmatrix} \omega^1 \\ \vdots \\ \omega^n \end{pmatrix}.$$

Proof.

$$\begin{pmatrix} \lambda^1 \\ \vdots \\ \lambda^n \end{pmatrix} (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) = \begin{pmatrix} \lambda^1 \\ \vdots \\ \lambda^n \end{pmatrix} (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) \Theta = \Theta = \Theta \begin{pmatrix} \omega^1 \\ \vdots \\ \omega^n \end{pmatrix} (\boldsymbol{e}_1, \dots, \boldsymbol{e}_n). \qquad \Box$$

Connection forms.

Definition 2.15. The *connection form* with respect to an orthonormal frame $\{e_j\}$ is a $n \times n$ -matrix valued one form Ω on U defined by

$$\Omega = \begin{pmatrix} \omega_1^1 & \omega_2^1 & \dots & \omega_n^1 \\ \omega_1^2 & \omega_2^2 & \dots & \omega_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \omega_1^n & \omega_2^n & \dots & \omega_n^n \end{pmatrix}, \qquad \omega_j^k := \langle \nabla \boldsymbol{e}_j, \boldsymbol{e}_k \rangle \in \wedge^1(U).$$

By definition, we have $\nabla e_j = \sum_{k=1}^n \omega_j^k e_k$, that is, $\nabla [e_1, \dots, e_n] = [e_1, \dots, e_n] \Omega$.

Lemma 2.16. $\omega_j^k = -\omega_k^j$.

Proof.
$$\omega_j^k = \langle \nabla \boldsymbol{e}_j, \boldsymbol{e}_k \rangle = d \langle \boldsymbol{e}_j, \boldsymbol{e}_k \rangle - \langle \boldsymbol{e}_j, \nabla \boldsymbol{e}_k \rangle = -\omega_k^j.$$

Lemma 2.17. $d\omega^i = \sum_{l=1}^n \omega^l \wedge \omega_l^i$.

Proof.

$$d\omega^{i}(\boldsymbol{e}_{j},\boldsymbol{e}_{k}) = \boldsymbol{e}_{j}\omega^{i}(\boldsymbol{e}_{k}) - \boldsymbol{e}_{k}\omega^{i}(\boldsymbol{e}_{j}) - \omega^{i}([\boldsymbol{e}_{j},\boldsymbol{e}_{k}]) = -\omega^{i}([\boldsymbol{e}_{j},\boldsymbol{e}_{k}])$$
$$= -\omega^{i}(\nabla \boldsymbol{e}_{j}\boldsymbol{e}_{k} - \nabla \boldsymbol{e}_{k}\boldsymbol{e}_{j}) = -\left\langle \nabla \boldsymbol{e}_{j}\boldsymbol{e}_{k} - \nabla \boldsymbol{e}_{k}\boldsymbol{e}_{j}, \boldsymbol{e}_{i}\right\rangle = -\omega^{i}_{k}(\boldsymbol{e}_{j}) + \omega^{i}_{j}(\boldsymbol{e}_{k})$$
$$= \sum_{l=1}^{n} \left(-\omega^{i}_{l}(\boldsymbol{e}_{j})\omega^{l}(\boldsymbol{e}_{k}) + \omega^{i}_{l}(\boldsymbol{e}_{k})\omega^{l}(\boldsymbol{e}_{j})\right) = \sum_{l=1}^{n} \omega^{l} \wedge \omega^{i}_{l}(\boldsymbol{e}_{j},\boldsymbol{e}_{k}).$$

Exercises

- **2-1** Let $\{e_j\}$ and $\{v_j\}$ be two orthonormal frames on a domain U of a Riemannian *n*-manifold M, which are related as (2.11). Show that the connection forms Ω of $\{e_j\}$ and Λ of $\{v_j\}$ satisfy $\Omega = \Theta^{-1}\Lambda\Theta + \Theta^{-1}d\Theta$.
- **2-2** Let \mathbb{R}^3_1 be the 3-dimensional Lorentz-Minkowski space and let $H^2(-c^2)$ the hyperbolic 2-space (i.e. the hyperbolic plane) as defined in Example 1.8. Verify that

$$(u,v) \mapsto \left(\frac{1}{c}\cosh cu, \frac{\cos v}{c}\sinh cu, \frac{\sin v}{c}\sinh cu\right)$$

gives a local coordinate system on $U := H^2(-c^2) \setminus \{(1/c, 0, 0)\}$, and

$$\boldsymbol{e}_1 := (\sinh c u, \cos v \cosh c u, \sin v \cosh c u), \qquad \boldsymbol{e}_2 := (0, -\sin v, \cos v)$$

forms a orthonormal frame on U.