3 Curvature form as an integrability condition

3.1 Addendum to the previous section

Proposition 3.1 (The local expression of the Lie bracket). Let $(U; x^1, \ldots, x^n)$ be a coordinate neighborhood of an n-manifold M. Then the Lie bracket of two vector fields

$$X = \sum_{j=1}^{n} \xi^{j} \frac{\partial}{\partial x^{j}}, \qquad Y = \sum_{j=1}^{n} \eta^{j} \frac{\partial}{\partial x^{j}}$$

is expressed as

$$[X,Y] = \sum_{j=1}^{n} \left(\xi^k \frac{\partial \eta^j}{\partial x^k} - \eta^k \frac{\partial \xi^j}{\partial x^k} \right) \frac{\partial}{\partial x^j}.$$

Proof. For a smooth function f on U, it holds that

$$\frac{\partial}{\partial x^i}\frac{\partial}{\partial x^j}f = \frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i} = \frac{\partial}{\partial x^j}\frac{\partial}{\partial x^i}f.$$

Hence $[\partial/\partial x^i, \partial/\partial x^j] = 0$. Then the conclusion follows from bilinearly of [X, Y] and the formula

$$[fX, Y] = f[X, Y] - (Yf)X,$$
 $[X, fY] = f[X, Y] + (Xf)Y$

for a smooth function f and vector fields X and Y.

Proposition 3.2 (A local expression of the connection forms). Let U be a domain of a Riemannian n-manifold (M, g) and $[e_1, \ldots, e_n]$ an orthonormal frame on U. Then the connection form ω_i^j with respect to the frame $[e_j]$ is obtained as

$$\omega_i^j(\boldsymbol{e}_k) = \frac{1}{2} \bigg(- \langle [\boldsymbol{e}_i, \boldsymbol{e}_j], \boldsymbol{e}_k \rangle + \langle [\boldsymbol{e}_j, \boldsymbol{e}_k], \boldsymbol{e}_i \rangle + \langle [\boldsymbol{e}_k, \boldsymbol{e}_i], \boldsymbol{e}_j \rangle \bigg),$$

where $\langle \ , \ \rangle$ denotes the inner product induced from g.

Proof. By the definition of the Levi-Civita connection ∇ ,

$$\begin{split} \omega_i^j(\boldsymbol{e}_k) &= \langle \nabla_{\boldsymbol{e}_k} \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \boldsymbol{e}_k \langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle - \langle \boldsymbol{e}_i, \nabla_{\boldsymbol{e}_k} \boldsymbol{e}_j \rangle = - \left\langle \boldsymbol{e}_i, \nabla_{\boldsymbol{e}_j} \boldsymbol{e}_k + [\boldsymbol{e}_k, \boldsymbol{e}_j] \right\rangle \\ &= -\boldsymbol{e}_j \langle \boldsymbol{e}_i, \boldsymbol{e}_k \rangle + \left\langle \nabla_{\boldsymbol{e}_j} \boldsymbol{e}_i, \boldsymbol{e}_k \right\rangle - \left\langle \boldsymbol{e}_i, [\boldsymbol{e}_j, \boldsymbol{e}_k] \right\rangle \\ &= \left\langle \nabla_{\boldsymbol{e}_i} \boldsymbol{e}_j, \boldsymbol{e}_k \right\rangle + \left\langle [\boldsymbol{e}_i, \boldsymbol{e}_j], \boldsymbol{e}_k \right\rangle - \left\langle \boldsymbol{e}_i, [\boldsymbol{e}_j, \boldsymbol{e}_k] \right\rangle \\ &= \boldsymbol{e}_i \langle \boldsymbol{e}_j, \boldsymbol{e}_k \rangle - \left\langle \boldsymbol{e}_j, \nabla_{\boldsymbol{e}_i} \boldsymbol{e}_k \right\rangle + \left\langle [\boldsymbol{e}_i, \boldsymbol{e}_j], \boldsymbol{e}_k \right\rangle - \left\langle \boldsymbol{e}_i, [\boldsymbol{e}_j, \boldsymbol{e}_k] \right\rangle \\ &= - \left\langle \boldsymbol{e}_j, \nabla_{\boldsymbol{e}_k} \boldsymbol{e}_i \right\rangle - \left\langle \boldsymbol{e}_j, [\boldsymbol{e}_i, \boldsymbol{e}_k] \right\rangle + \left\langle [\boldsymbol{e}_i, \boldsymbol{e}_j], \boldsymbol{e}_k \right\rangle - \left\langle \boldsymbol{e}_i, [\boldsymbol{e}_j, \boldsymbol{e}_k] \right\rangle \\ &= - \omega_i^j(\boldsymbol{e}_k) + \left\langle [\boldsymbol{e}_i, \boldsymbol{e}_j], \boldsymbol{e}_k \right\rangle - \left\langle \boldsymbol{e}_j, [\boldsymbol{e}_k], \boldsymbol{e}_i \right\rangle + \left\langle [\boldsymbol{e}_k, \boldsymbol{e}_i], \boldsymbol{e}_j \right\rangle. \quad \Box \end{split}$$

3.2 Preliminaries

Integrability condition, a review. Let U be a domain of \mathbb{R}^m with coordinate system (x^1, \ldots, x^m) , and consider a system of differential equations

(3.1)
$$\frac{\partial F}{\partial x^l} = F\Omega_l \qquad (l = 1, \dots, m)$$

with initial condition

(3.2)
$$F(\mathbf{P}_0) = F_0 \in \mathbf{M}_n(\mathbb{R}), \qquad \mathbf{P}_0 = (x_0^1, \dots, x_0^m) \in U,$$

where F is an unknown map into the space of $n \times n$ -real matrices $M_n(\mathbb{R})$, and the coefficient matrices Ω_l (l = 1, ..., m) are $M_n(\mathbb{R})$ -valued C^{∞} -functions.

Lemma 3.3. If the initial condition F_0 in (3.2) is non-singular, i.e., $F_0 \in GL(n, \mathbb{R})^1$, F satisfying

^{05.} July, 2022. Revised: 12. July, 2022

¹GL (n, \mathbb{R}) denotes the set of $n \times n$ -regular matrices.

(3.1) is a $GL(n, \mathbb{R})$ -valued function, that is, F is invertible for each point on U.

Proof. For each $P \in U$, take a smooth path $\gamma(t) := (x^1(t), \dots, x^m(t))$ $(0 \leq t \leq 1)$ with $\gamma(0) = P_0$ and $\gamma(1) = P$. Then the matrix-valued function $\hat{F} := F \circ \gamma$ of one variable satisfies the ordinary differential equation

$$\frac{d\hat{F}}{dt} = \hat{F}\hat{\Omega}, \qquad \hat{\Omega} := \sum_{l=1}^{m} \Omega_l \circ \gamma \frac{dx^l}{dt}.$$

Hence $\varphi := \det \hat{F}$ satisfies

$$\frac{d\varphi}{dt} = \frac{d}{dt} \det \hat{F} = \operatorname{tr}\left(\tilde{F}\frac{d\hat{F}}{dt}\right) = \operatorname{tr}(\tilde{F}\hat{F}\hat{\Omega}) = \det \hat{F}\operatorname{tr}\hat{\Omega} = \varphi\omega$$

where \hat{F} denotes the cofactor matrix of \hat{F} and $\omega := \operatorname{tr} \hat{\Omega}$. So

$$\det \hat{F}(t) = \varphi(t) = \varphi_0 \exp \int_0^t \omega(\tau) \, d\tau \qquad (\varphi_0 := \det F_0),$$

proving the lemma.

As seen in the previous lectures², the following *integrability condition* holds:

Lemma 3.4. If a C^{∞} -map $F: U \to \operatorname{GL}(n, \mathbb{R})$ satisfies (3.1), then it hold on U that

(3.3)
$$\frac{\partial \Omega_l}{\partial x^k} - \frac{\partial \Omega_k}{\partial x^l} + \Omega_k \Omega_l - \Omega_l \Omega_k = O \qquad (1 \le k < l \le m).$$

The integrability condition (3.3) guarantees existence of the solution of (3.1) as follows³:

Theorem 3.5. Let $\Omega_l: U \to M_m(\mathbb{R})$ (l = 1, ..., n) be C^{∞} -functions defined on a simply connected domain $U \subset \mathbb{R}^n$ satisfying (3.3) Then for each $P_0 \in U$ and $F_0 \in M_m(\mathbb{R})$, there exists the unique $m \times m$ -matrix valued function $F: U \to M_m(\mathbb{R})$ satisfying (3.1) and (3.2). Moreover,

- if $F_0 \in GL(m, \mathbb{R})$, $F(P) \in GL(m, \mathbb{R})$ holds on U,
- if $F_0 \in SO(n)$ and Ω_l 's are skew-symmetric matrices, $F(P) \in SO(n)$ holds on U.

Coordinate-free expressions Let $\Omega_l : U \to M_n(\mathbb{R})$ (l = 1, ..., m) be C^{∞} -functions defined on a domain $U \subset \mathbb{R}^m$, and define $n \times n$ -matrix Ω of 1-forms as

$$(3.4) \quad \Omega = \begin{pmatrix} \omega_1^1 & \omega_2^1 & \dots & \omega_n^1 \\ \omega_1^2 & \omega_2^2 & \dots & \omega_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \omega_1^n & \omega_2^n & \dots & \omega_n^n \end{pmatrix} := \sum_{l=1}^m \Omega_l \, dx^l = \begin{pmatrix} \sum \omega_{l,1}^l \, dx^l & \sum \omega_{l,2}^l \, dx^l & \dots & \sum \omega_{l,n}^l \, dx^l \\ \sum \omega_{l,1}^2 \, dx^l & \sum \omega_{l,2}^2 \, dx^l & \dots & \sum \omega_{l,n}^l \, dx^l \\ \vdots & \vdots & \ddots & \vdots \\ \sum \omega_{l,1}^n \, dx^l & \sum \omega_{l,2}^n \, dx^l & \dots & \sum \omega_{l,n}^n \, dx^l \end{pmatrix},$$

where $\Omega_l = (\omega_{l,j}^i)$. Then Ω is considered as a $M_n(\mathbb{R})$ -valued 1-form, and (3.1) is restated as

$$(3.5) dF = F\Omega.$$

Lemma 3.6. Under the situation above, the integrability condition (3.3) is equivalent to

(3.6)
$$d\Omega + \Omega \wedge \Omega = O, \quad \text{where} \quad \Omega \wedge \Omega = \left(\sum_{k=1}^{n} \omega_k^i \wedge \omega_j^k\right)_{i,j=1,\dots,n}$$

²Proposition 2.3 in Advanced Topics in Geometry E (MTH.B501).

³Theorem 2.5 in Advanced Topics in Geometry E (MTH.B501).

Proof. Assume F be a solution of (3.5) with $F \in GL(n, \mathbb{R})$. Then

 $O = ddF = d(F\Omega) = dF \wedge \Omega + F d\Omega = F(\Omega \wedge \Omega + d\Omega).$

Thus, by using differential forms, we can state the system of partial differential equations (3.1) and its integrability condition (3.3) in coordinate-free form. The proof of Theorem 3.5 works not only simply connected domain $U \subset \mathbb{R}^m$ but also simply connected *m*-manifold, and thus, we have

Theorem 3.7. Let Ω be an $M_n(\mathbb{R})$ -valued 1-form on a simply connected m-manifold M satisfying (3.6). Then for each $P_0 \in M$ and $F_0 \in M_n(\mathbb{R})$, there exists the unique $n \times n$ -matrix valued function $F: M \to M_n(\mathbb{R})$ satisfying (3.5) with $F(P) = F_0$. Moreover,

- if $F_0 \in \operatorname{GL}(n, \mathbb{R})$, $F(\mathbf{P}) \in \operatorname{GL}(n, \mathbb{R})$ holds on M,
- if $F_0 \in SO(m)$ and Ω is skew-symmetric, $F(P) \in SO(m)$ holds on M.

When n = 1, that is, Ω is a usual 1-form, $\Omega \wedge \Omega$ always vanishes, and the integrability condition (3.6) is simply $d\Omega = 0$. Then we have the following Poncaré's lemma⁴.

Theorem 3.8 (Poincaré's lemma). If a differential 1-form ω defined on a simply connected and connected m-manifold M is closed, that is, $d\omega = 0$ holds, then there exists a C^{∞} -function f on U such that $df = \omega$. Such a function f is unique up to additive constants.

Proof. Since ω is closed, there exists a function F on M satisfying $dF = F\omega$ with initial condition $F(\mathbf{P}_0) = 1$. By Lemma 3.3, F does not vanish on M, that is, F > 0. Hence $f := \log F$ is a smooth function on M satisfying $df = dF/F = F\omega/F = \omega$. Take another function g on M satisfying $dg = \omega$, d(f - g) = 0 holds. Then connectedness of M infers that f - g is constant.

3.3 Curvature form

Let U be a domain of n-dimensional Riemannian manifold (M, g). We let Ω be the connection form with respect to an orthonormal frame $[e_1, \ldots, e_n]$ on U, as defined in Definition 2.15.

Definition 3.9. We define a skew-symmetric matrix-valued 2-form by $K := d\Omega + \Omega \wedge \Omega$ and call the *curvature form* with respect to the frame $[e_1, \ldots, e_n]$.

Take an orthonormal frame $[v_1, \ldots, v_n]$ on U and take a gauge transformation $\Theta: U \to O(n)$:

$$[\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n]=[\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n]\Theta$$

Denoting the connection form and the curvature form with respect to $[v_i]$ by $\widetilde{\Omega}$ and \widetilde{K} . Then

Proposition 3.10. (1) $\Omega = \Theta^{-1} \widetilde{\Omega} \Theta + \Theta^{-1} d\Theta$, (2) $K = \Theta^{-1} \widetilde{K} \Theta$.

Proof. Since

$$[\boldsymbol{e}_1, \dots, \boldsymbol{e}_n] \Omega = \nabla[\boldsymbol{e}_1, \dots, \boldsymbol{e}_n] = \nabla([\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] \Theta) = \nabla[\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] \Theta + [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] d\Theta$$
$$= [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] \widetilde{\Omega} \Theta + [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] d\Theta = [\boldsymbol{e}_1, \dots, \boldsymbol{e}_n] \Theta^{-1}(\widetilde{\Omega} \Theta + d\Theta),$$

the first assertion is obtained. Next, noticing $d(\widetilde{\Omega}\Theta) = (d\widetilde{\Omega})\Theta - \widetilde{\Omega} \wedge d\Theta$, $\widetilde{\Omega}\Theta^{-1} \wedge \Theta\widetilde{\Omega} = \widetilde{\Omega} \wedge \widetilde{\Omega}$, and so on, we have

$$\begin{split} d\Omega &+ \Omega \wedge \Omega = d(\Theta^{-1}\Omega\Theta + \Theta^{-1}d\Theta) + (\Theta^{-1}\Omega\Theta + \Theta^{-1}d\Theta) \wedge (\Theta^{-1}\Omega\Theta + \Theta^{-1}d\Theta) \\ &= -\Theta^{-1}d\Theta\Theta^{-1}\widetilde{\Omega}\Theta + \Theta^{-1}d\widetilde{\Omega}\Theta - \Theta^{-1}\widetilde{\Omega} \wedge d\Theta - \Theta^{-1}d\Theta\Theta^{-1} \wedge d\Theta \\ &+ \Theta^{-1}\widetilde{\Omega}\Theta \wedge \Theta^{-1}\widetilde{\Omega}\Theta + \Theta^{-1}d\Theta \wedge \Theta^{-1}\widetilde{\Omega}\Theta + \Theta^{-1}d\Theta \wedge \Theta^{-1}d\Theta + \Theta^{-1}d\Theta \wedge \Theta^{-1}d\Theta \\ &= \Theta^{-1}(d\widetilde{\Omega} + \widetilde{\Omega} \wedge \widetilde{\Omega})\Theta. \end{split}$$

proving (2).

⁴Theorem 2.6 in Advanced Topics in Geometry E (MTH.B501).

The goal of this section is to prove the following

Theorem 3.11. Let U be a domain of a Riemannian n-manifold (M, g) and K the curvature form with respect to an orthonormal frame $[e_1, \ldots, e_n]$ on U. For a point $P \in U$, there exists a local coordinate system (x^1, \ldots, x^n) around P such that $[\partial/\partial x^1, \ldots, \partial/\partial x^n]$ is an orthonormal frame if and only if K vanishes on a neighborhood of P.

Remark 3.12. By (2) of Proposition 3.10, the condition K = 0 does not depend on choice of orthonormal frames. A Riemannian manifold (M, g) said to be *flat* if K = 0 holds on M.

Proof of Theorem 3.11. First, we shall show the "only if" part: Let (x^1, \ldots, x^n) be a coordinate system such that $[e_i := \partial/\partial x^j]$ is an orthonormal frame. Since

$$[\boldsymbol{e}_j, \boldsymbol{e}_k] = \left[\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k}\right] = \mathbf{0},$$

Proposition 3.2 yields that all components of the connection forms ω_i^j vanish. Hene we have K = 0.

Conversely, assume K = 0 for an orthonormal frame $[e_j]$. Since the connection form Ω satisfies $d\Omega + \Omega \wedge \Omega = O$, there exists a matrix-valued function $\Theta: V \to SO(n)$ satisfying $d\Theta = \Omega\Theta$, $\Theta(P) = id$ on a sufficiently small neighborhood V of P, because of Theorem 3.5. Take a new orthonormal frame $[v_1, \ldots, v_n] := [e_1, \ldots, e_n]\Theta$. Then by (1) of Proposition 3.10, the connection form $\widetilde{\Omega} = (\widetilde{\omega}_i^j)$ with respect to $[v_j]$ vanishes identically So by Lemma 2.17, $d\omega^i = 0$ holds for $i = 1, \ldots, n$. Hence by the Poincaré Lemma (Theorem 3.8), there exists a smooth functions on a neighborhood V of P. Such (x^1, \ldots, x^n) is a desired coordinate system if V is sufficiently small. \Box

Exercises

3-1 Consider a Riemannian metric

$$g = dr^2 + \{\varphi(r)\}^2 d\theta^2 \quad \text{on} \quad U := \{(r, \theta); 0 < r < r_0, -\pi < \theta < \pi\},\$$

where $r_0 \in (0, +\infty]$ and φ is a positive smooth function defined on $(0, r_0)$ with

$$\lim_{r \to +0} \varphi(r) = 0, \qquad \lim_{r \to +0} \varphi'(r) = 1.$$

Find a function φ such that (U,g) is flat. (Hint: $[\partial/\partial r, (1/\varphi)\partial/\partial \theta)]$ is an orthonormal frame.)

3-2 Compute the curvature form of $H^2(-c^2)$ with respect to an orthonormal frame $[e_1, e_2]$ as in Exercise 2-2.