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3 Curvature form as an integrability condition

3.1 Addendum to the previous section

Proposition 3.1 (The local expression of the Lie bracket). Let (U;z?',...,2") be a coordinate
neighborhood of an n-manifold M. Then the Lie bracket of two vector fields

_ j _ j
X jz::lg Oxd’ Y jz::ln OxJ

is expressed as

N N AN
— KZd kS ) 2
X Y] = Z (5 ok ! 83:’“) dxl’

j=1
Proof. For a smooth function f on U, it holds that
o o , of  9*f 0 0

Oxt 0z’ Oxidxi  Bxidxi Ozl Ox I
Hence [0/0x%,0/0x7] = 0. Then the conclusion follows from bilinearlity of [X, Y] and the formula
for a smooth function f and vector fields X and Y. O
Proposition 3.2 (A local expression of the connection forms). Let U be a domain of a Riemannian

n-manifold (M, g) and [e1,...,ey] an orthonormal frame on U. Then the connection form wg with
respect to the frame [e;] is obtained as
1

dler) = 5 (~leneslen + eseil e + (fenel ) ),

where { , ) denotes the inner product induced from g.
Proof. By the definition of the Levi-Civita connection V,
wf(ek) = (Ve,€i,e;) = ei (e;,e;) — (e;,Ve,e;) = — (e;, Ve, e, + e, €5])
= —e; (e;, ex) + <Vejei, ek> — (e, [e;, ex])
= (Ve,ej,ex) + ([ei, 5], ex) — (ei, e, ex])
=e;(ej,er) —(e;, Ve,ex) + ([ei €], er) — (ei, ), ex])

= —(ej, Ve, &) — (e}, [e;, er]) + ([ei, ;] ex) — (ei, [e;, ex])

= 7wzj'.(ek) + <[eia ej]v ek> - <[ej> ek]a ei> + <[eka ei]a ej> . U
3.2 Preliminaries
Integrability condition, a review. Let U be a domain of R™ with coordinate system (z!,..., 2™),
and consider a system of differential equations
oF
with initial condition
(3.2) F(Py) = Fy € M,(R),  Po=(xf,...,25") €U,

where F is an unknown map into the space of n x n-real matrices M, (R), and the coefficient
matrices 2, (I =1,...,m) are M, (R)-valued C°°-functions.

Lemma 3.3. If the initial condition Fy in (3.2) is non-singular, i.e., Fy € GL(n,R)!, F satisfying

05. July, 2022. Revised: 12. July, 2022
LGL(n,R) denotes the set of n x n-regular matrices.



MTH.B502; Sect. 3 10

(3.1) is a GL(n,R)-valued function, that is, F is invertible for each point on U.

Proof. For each P € U, take a smooth path y(t) := (z1(¢),...,2™(t)) (0 £t £ 1) with v(0) = Py
and (1) = P. Then the matrix-valued function F:=Fon of one variable satisfies the ordinary
differential equation

dF .. i
— 0
dt ’ g lwdt

Hence ¢ := det F' satisfies

dp d = dF P y
i dtdetFtr<th> tr(FFS()) =det Ftr {2 =

where F denotes the cofactor matrix of F' and w := tr £2. So

det F(t) = o(t) = o exp/o w(r)dr (po := det Fp),

proving the lemma. O
As seen in the previous lectures?, the following integrability condition holds:
Lemma 3.4. If a C*®-map F: U — GL(n,R) satisfies (3.1), then it hold on U that

0 00
(3.3) 67,5—3—’“+!2sz 22,=0 (1<k<l<m).

The integrability condition (3.3) guarantees existence of the solution of (3.1) as follows?:

Theorem 3.5. Let 2;: U — M,,(R) (I =1,...,n) be C®-functions defined on a simply connected
domain U C R™ satisfying (3.3) Then for each Py € U and Fy € M,,,(R), there exists the unique
m x m-matriz valued function F': U — M, (R) satisfying (3.1) and (3.2). Moreover,

o if Fy € GL(m,R), F(P) € GL(m,R) holds on U,
o if Fy € SO(n) and (2;’s are skew-symmetric matrices, F(P) € SO(n) holds on U.

Coordinate-free expressions Let 2;: U — M, (R) (I =1,...,m) be C*°-functions defined on
a domain U C R™, and define n X n-matrix {2 of 1-forms as
wi Wi o Wl Zwél dfci Zwézdxi Zwénd;ci
2 2 2 m
wi wi ... w Ywidrt Ywiydyt ... Y wp,dx
(34) 2= . | =Y dt = . ) , " :
: : o =1 : : . :
Wl wh Wi Ywidat Ywpydet .o Y wp, dat

where (2 = (wj ;). Then (2 is considered as a M, (R)-valued 1-form, and (3.1) is restated as
(3.5) dF = FQ.

Lemma 3.6. Under the situation above, the integrability condition (3.3) is equivalent to

.....

(3.6) A+ 02N 02 =0, where 2N = (Zwi/\wf) .
k=1 7,7=1 n

2Proposition 2.3 in Advanced Topics in Geometry E (MTH.B501).
3Theorem 2.5 in Advanced Topics in Geometry E (MTH.B501).
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Proof. Assume F be a solution of (3.5) with F' € GL(n,R). Then
O=ddF =d(F2)=dF N2+ Fd2=F(2 A2+ d2). O

Thus, by using differential forms, we can state the system of partial differential equations (3.1)
and its integrability condition (3.3) in coordinate-free form. The proof of Theorem 3.5 works not
only simply connected domain U C R™ but also simply connected m-manifold, and thus, we have

Theorem 3.7. Let 2 be an M,,(R)-valued 1-form on a simply connected m-manifold M satisfying
(3.6). Then for each Py € M and Fy € M, (R), there exists the unique n X n-matriz valued function
F: M — M,(R) satisfying (3.5) with F(P) = Fy. Moreover,

o if Fy € GL(n,R), F(P) € GL(n,R) holds on M,
o if Fy € SO(m) and §2 is skew-symmetric, F(P) € SO(m) holds on M.

When n = 1, that is, {2 is a usual 1-form, 2 A {2 always vanishes, and the integrability condition

(3.6) is simply df2 = 0. Then we have the following Poncaré’s lemma?.

Theorem 3.8 (Poincaré’s lemma). If a differential 1-form w defined on a simply connected and
connected m-manifold M is closed, that is, dw = 0 holds, then there exists a C*°-function f on U
such that df = w. Such a function f is unique up to additive constants.

Proof. Since w is closed, there exists a function F' on M satisfying dF' = Fw with initial condition
F(Py) = 1. By Lemma 3.3, F does not vanish on M, that is, F' > 0. Hence f := log F is a smooth
function on M satisfying df = dF/F = Fw/F = w. Take another function g on M satisfying
dg = w, d(f — g) = 0 holds. Then connectedness of M infers that f — ¢ is constant. O

3.3 Curvature form

Let U be a domain of n-dimensional Riemannian manifold (M, g). We let {2 be the connection
form with respect to an orthonormal frame [ey,...,e,] on U, as defined in Definition 2.15.

Definition 3.9. We define a skew-symmetric matrix-valued 2-form by K := df2 4+ 2 A 2 and call

the curvature form with respect to the frame [eq, ..., e,].
Take an orthonormal frame [vy,...,v,] on U and take a gauge transformation ©: U — O(n):
le1,...,en] =[v1,...,0,]0.

Denoting the connection form and the curvature form with respect to [v;] by 2 and K. Then
Proposition 3.10. (1) 2 = 01020 +671d6, (2) K = O 'K0.
Proof. Since
[e1,...,e,]2=Vle1,...,e,] =V([v1,...,0,]0) = V]v1,...,0,]0 + [v1,...,v,]dO
= [v1,...,0,]020 + [v1,...,0,]dO = [e1,...,e, |0 (26 + dO),
the first assertion is obtained. Next, noticing d(f)@) = (df))@ —QANdO, 2071 NON = 2 A0,
and so on, we have
A+ 02NN =dO7' 020 +6071dO) + (071260 + O1dO) A (071260 + O~1dO)
=-071dee7'0260 + 07126 -~ 07 2 N d6 — 671dOO ! A dO
+O07100N07IN0 + 07O NOTINO + 6710 N OO + ©71dO N O 1dO
—0 12+ 2 N6,
proving (2). O

4Theorem 2.6 in Advanced Topics in Geometry E (MTH.B501).
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The goal of this section is to prove the following

Theorem 3.11. Let U be a domain of a Riemannian n-manifold (M, g) and K the curvature form
with respect to an orthonormal frame [ey,...,e,] on U. For a point P € U, there exists a local
coordinate system (z1,... 2™) around P such that [0/0z*,...,8/0z"] is an orthonormal frame if

and only if K vanishes on a neighborhood of P.

Remark 3.12. By (2) of Proposition 3.10, the condition K = 0 does not depend on choice of
orthonormal frames. A Riemannian manifold (M, g) said to be flat if K = 0 holds on M.

Proof of Theorem 3.11. First, we shall show the “only if” part: Let (x!,...,2") be a coordinate
system such that [e; := 8/0x7] is an orthonormal frame. Since

s exl = | 57 par | =

Proposition 3.2 yields that all components of the connection forms wz vanish. Hene we have K = 0.

Conversely, assume K = 0 for an orthonormal frame [e;]. Since the connection form 2 satisfies
df2 + Q2 A 2 = O, there exists a matrix-valued function ©: V' — SO(n) satisfying d©® = 26,
O(P) = id on a sufficiently small neighborhood V' of P, because of Theorem 3.5. Take a new

orthonormal frame [vq,...,v,] ;= [e1,...,e,]@. Then by (1) of Proposition 3.10, the connection
form 2 = (@]) with respect to [v;] vanishes identically So by Lemma 2.17, dw’ = 0 holds for
t=1,...,n. Hence by the Poincaré Lemma (Theorem 3.8), there exists a smooth functions on a

neighborhood V of P. Such (z?,...,z") is a desired coordinate system if V is sufficiently small. [

Ezxercises
3-1 Consider a Riemannian metric
g =dr* + {p(r)}? do? on U:={(r0);0<r<ry—-n<6<m},
where ry € (0, +00] and ¢ is a positive smooth function defined on (0, ry) with

. - . 1 _
Jimoo(r) =0, lim ¢'(r) =1.

Find a function ¢ such that (U, g) is flat. (Hint: [0/0r, (1/¢)0/00)] is an orthonormal frame.)

3-2 Compute the curvature form of H?(—c?) with respect to an orthonormal frame [e;, €3] as in
Exercise 2-2.



