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4 The Sectional Curvature

4.1 Preliminaries

Exterior derivatives. Let α and ω be a 2-form and 1-form on a manifold M , respectively. The
exterior product of α and ω is defined as a 3-form on M by

(4.1) (α ∧ ω)(X,Y, Z) = (ω ∧ α)(X,Y, Z) := α(X,Y )ω(Z) + α(Y, Z)ω(X) + α(Z,X)ω(Y ).

Then by a direct computation together with (2.7), it holds that

(4.2) (µ ∧ ω) ∧ λ = µ ∧ (ω ∧ λ)

(
=: µ ∧ ω ∧ λ

)
for 1-forms µ, ω and λ. The exterior derivative of a 2-from α is a 3-form dα defined as

(4.3) dα(X,Y, Z)

:= Xα(Y, Z)d+ Y α(Z,X) + Zα(X,Y )− α([X,Y ], Z)− α([Z,X], Y )− α([Y, Z], X).

Then, for one forms µ and ω, we have

(4.4) ddω = 0, d(µ ∧ ω) = dµ ∧ ω − µ ∧ dω,

by the definition and the Jacobi identity (2.3).

Exterior products of tangent vectors. Let V be an n-dimensional vector space (1 5 n < ∞)
and denote by V ∗ its dual. Then (V ∗)∗ can be naturally identified with V itself. In fact,

I : V 3 v 7−→ Iv ∈ (V ∗)∗ := {A : V ∗ → R; linear}, Iv(α) := α(v)

is a linear map with trivial kernel. Then I is an isomorphism because dim(V ∗)∗ = dimV .
We denote by ∧2V := ∧2(V ∗)∗ the set of skew-symmetric bilinear forms on V ∗. For vectors v,

w ∈ V , the exterior product of them is an element of ∧2V defined as

(v ∧w)(α, β) := α(v)β(w)− α(w)β(v) (α, β ∈ V ∗).

For a basis [e1, . . . , en] on V ,

(4.5) {ei ∧ ej ; 1 5 i < j 5 n}

is a basis of ∧2V . In particular dim∧2V = 1
2n(n− 1). When V is a vector space endowed with an

inner product 〈 , 〉 and [e1, . . . , en] is an orthonormal basis, there exists the unique inner product,
which is also denoted by 〈 , 〉, of ∧2V such that (4.5) is an orthonormal basis. This definition
of the inner product does not depend on choice of orthonormal bases of V . In fact, take another
orthonormal basis [v1, . . . ,vn] related with [ej ] by

[e1, . . . , en] = [v1, . . . ,vn]Θ Θ = (θji ) ∈ O(n).

Since tΘ = Θ−1, [v1, . . . ,vn] = [e1, . . . , en]
tΘ holds. Hence

vs ∧ vt =

(∑
i

θisei

)
∧

∑
j

θjtej

 =
∑
i,j

θsi θ
t
j(ei ∧ ej) =

∑
i<j

(
θsi θ

t
j − θsjθ

t
i)(ei ∧ ej

)
,
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and so

〈vs ∧ vt,vu ∧ vv〉 =
∑

i<j,k<l

(θsi θ
t
j − θsjθ

t
i)(θ

u
kθ

v
l − θul θ

v
k) 〈ei ∧ ej , ek ∧ el〉

=
∑

i<j,k<l

(θsi θ
t
j − θsjθ

t
i)(θ

u
kθ

v
l − θul θ

v
k)δikδjl =

∑
i<j

(θsi θ
t
j − θsjθ

t
i)(θ

u
i θ

v
j − θuj θ

v
i )

=
∑
i<j

(θsi θ
t
jθ

u
i θ

v
j − θsjθ

t
iθ

u
i θ

v
j − θsi θ

t
jθ

u
j θ

v
i + θsjθ

t
iθ

u
j θ

v
i )

=
∑
i<j

θsi θ
t
jθ

u
i θ

v
j +

∑
i<j

θsjθ
t
iθ

u
i θ

v
j −

∑
i>j

θsjθ
t
iθ

u
i θ

v
j +

∑
i>j

θsi θ
t
jθ

u
i θ

v
j

=
∑
i 6=j

θsi θ
t
jθ

u
i θ

v
j −

∑
i6=j

θsjθ
t
iθ

u
i θ

v
j

=
∑
i,j

(θsi θ
t
jθ

u
i θ

v
j − θsjθ

t
iθ

u
i θ

v
j )−

∑
i

(θsi θ
t
iθ

u
i θ

v
i − θsi θ

t
iθ

u
i θ

v
i )

= δsuδtv − δtuδsv

because
∑

i θ
s
i θ

t
i = δst. So, if s < t and u < v, the second term of the right-hand side vanishes.

That is, {vs ∧ vt ; s < t} is an orthonormal basis as well as {ei ∧ ej ; i < j} is.

Symmetric bilinear forms. Let V be a real vector space. A bilinear map q : V × V → R is
said to be symmetric if q(v,w) = q(w,v) for all v, w ∈ V .
Lemma 4.1. Two symmetric bilinear forms q and q′ coincide with each other if and only if
q(v,v) = q′(v,v) hold for all v ∈ V .
Proof. By symmetricity, q(v,w) = 1

2 (q(v +w,v +w)− q(v,v)− q(w,w)) holds.

4.2 Sectional Curvature

Let U be a domain on a Riemannian n-manifold (M, g), and [e1, . . . , en] an orthonormal frame on
U . Denote by (ωj)j=1,...,n, Ω = (ωj

i )i,j=1,...,n and K = (κj
i )i=1,...,n := dΩ +Ω ∧Ω the dual frame,

the connection form and the curvature form with respect to the frame [ej ]. Then Lemma 2.17 and
Definition 3.9, we have

(4.6) dωj =
∑
l

ωl ∧ ωj
l , κj

i = dωj
i +

∑
l

ωj
l ∧ ωl

i.

Since Ω is a one form valued in the skew-symmetric matrices, so is K:

(4.7) ωj
i = −ωi

j , κj
i = −κi

j .

Proposition 4.2 (The first Bianchi identity). κi
j(ek, el) + κi

k(el, ej) + κi
l(ej , ek) = 0.

Proof. By (4.6) and (4.4),

0 = ddωi = d

(∑
s

ωs ∧ ωi
s

)
=
∑
s

(
dωs ∧ ωi

s − ωs ∧ ωi
s

)
=
∑
s

(∑
m

(ωm ∧ ωs
m) ∧ ωi

s − ωs ∧

(
κi
s −

∑
m

ωi
m ∧ dωm

s

))
=
∑
s,m

ωm ∧ ωs
m ∧ ωi

s +
∑
s,m

ωs ∧ ωi
m ∧ ωm

s −
∑
s

ωs ∧ κi
s

=
∑
s,m

ωm ∧ (ωs
m ∧ ωi

s + ωi
s ∧ ωs

m)−
∑
s

ωs ∧ κi
s = −

∑
s

ωs ∧ κi
s.
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Hence

0 =
∑
s

(ωs ∧ κi
s)(ej , ek, el) =

∑
s

(
ωs(ej)κ

i
s(ek, el) + ωs(ek)κ

i
s(el, ej) + ωs(el)κ

i
s(ej , ek)

)
=
∑
s

(
δsjκ

i
s(ek, el) + δskκ

i
s(el, ej) + δsl κ

i
s(ej , ek)

)
= κi

j(ek, el) + κi
k(el, ej) + κi

l(ej , ek),

proving the assertion.

Corollary 4.3. κi
j(ek, el) = κk

l (ei, ej).

Proof. By Proposition 4.2,

κi
j(ek, el) + κi

k(el, ej) + κi
l(ej , ek) = 0

κj
k(ei, el) + κj

i (el, ek) + κj
l (ek, ei) = 0

κk
i (ej , el) + κk

j (el, ei) + κk
l (ei, ej) = 0.

Summing up these and noticing κj
i = −κi

j , we have the conclusion.

A quadratic form induced from the curvature form. We fix a point p ∈ U . Under the
notation above, we can define a bilinear map

(4.8) K(ξ,η) :=
∑

i<j,k<l

κj
i (ek, el)ξ

klηij , ξ =
∑
k<l

ξklek ∧ el, η =
∑
i<j

ηijei ∧ ej

on ∧2TpM , where ej , κj
i…are considered tangent vectors, 2-forms at the fixed point p. In fact, one

can show that the definition (4.8) is independent of choice of orthonormal frames. As a immediate
conclusion of Corollary 4.3, we have

Lemma 4.4. K is symmetric.

Hence, taking Lemma 4.1 into an account, we define the sectional curvature as follows:

Definition 4.5. Let Πp ⊂ TpM be a 2-dimensional linear subspace in TpM . The sectional curva-
ture of (M, g) with respect to the plane Πp is a number

K(Πp) := K(v ∧w,v ∧w),

where {v,w} is an orthonormal basis of Πp

Remark 4.6. For (not necessarily orthonormal) basis {x,y} of Πp, the sectional curvature is ex-
pressed as

K(Πp) =
K(x ∧ y,x ∧ y)

〈x ∧ y,x ∧ y〉
,

where 〈 , 〉 of the right-hand side is the inner product of ∧2TpM induced from the Riemannian
metric.

Remark 4.7. The sectional curvature is a scalar corresponding to a 2-plane in the tangent space
TpM . Hence it can be considered as a function of 2-Grassmanian bundle induced from the tangent
bundle TM .
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Exercises

4-1 Consider a Riemannian metric

g = dr2 + {ϕ(r)}2 dθ2 on U := {(r, θ) ; 0 < r < r0,−π < θ < π},

where r0 ∈ (0,+∞] and ϕ is a positive smooth function defined on (0, r0) with

lim
r→+0

ϕ(r) = 0, lim
r→+0

ϕ(r)

r
= 1.

Classify the function ϕ so that g is of constant sectional curvature.

4-2 Let M ⊂ Rn+1 be an embedded submanifold endowed with the Riemannian metric induced
from the canonical Euclidean metric of Rn+1. Then the position vector x(p) of p ∈ M induces
a smooth map

x : M 3 p 7−→ x(p) ∈ Rn+1,

which is an (n+1)-tuple of C∞-functions. Let [e1, . . . , en] be an orthonormal frame defined
on a domain U ⊂ M . Since TpM ⊂ Rn+1, we can consider that ej is a smooth map from
U → Rn+1. Take a dual basis (ωj) to [ej ]. Prove that

dx =

n∑
j=1

ejω
j

holds on U . Here, we regard that dx is an (n + 1)-tuple of differential forms and ej is an
Rn+1-valued function for each j.


