5 Space forms

5.1 Constant sectional curvature

Let (M,q) be a Riemannian *n*-manifold, and let

$$\begin{aligned} \operatorname{Gr}_2(TM) := \cup_p \operatorname{Gr}_2(T_pM), \\ \operatorname{Gr}_2(T_pM) := \operatorname{2-Grassmannian of } T_pM = \{\Pi_p \subset T_pM \, ; \, \operatorname{2-dimensional subspace} \}. \end{aligned}$$

The sectional curvature defined in Definition 4.5 is a map $K \colon \operatorname{Gr}_2(TM) \to \mathbb{R}$ such that

$$K(\Pi_p) := \mathbf{K}(\mathbf{v} \wedge \mathbf{w}, \mathbf{v} \wedge \mathbf{w}),$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is the orthonormal basis of Π_p .

Fix a point p, and take an orthornormal frame $[e_1, \ldots, e_n]$ defined on a neighborhood U of p. Denote by (ω^j) , $\Omega = (\omega_i^j)$ and $K = (\kappa_i^j)$ the dual frame, the connection form and the curvature form with respect to the frame $[e_j]$, respectively.

Theorem 5.1. Assume there exists a real number k such that $K(\Pi_p) = k$ for all 2-dimensional subspace $\Pi_p \in T_pM$ for a fixed p. Then the curvature form is expressed as

$$\kappa_i^i = k\omega^i \wedge \omega^j$$
.

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.

Proof. By the assumption,
$$k = K(\text{Span}\{e_i, e_j\}) = K(e_i \wedge e_j, e_i \wedge e_j) = \kappa_i^i(e_i, e_j)$$
. Let

$$v := \cos \theta e_i + \sin \theta e_j, \qquad w := \cos \varphi e_l + \sin \varphi e_m$$

where $\{i,j\} \neq \{l,m\}$, and set $\Pi_{\theta,\varphi} := \operatorname{Span}\{\boldsymbol{v},\boldsymbol{w}\} \subset T_pM$. Then by bilinearity of the \wedge -product on T_pM , it holds that

$$\boldsymbol{v} \wedge \boldsymbol{w} = \cos \theta \cos \varphi \boldsymbol{e}_i \wedge \boldsymbol{e}_l + \cos \theta \sin \varphi \boldsymbol{e}_i \wedge \boldsymbol{e}_m + \sin \theta \cos \varphi \boldsymbol{e}_j \wedge \boldsymbol{e}_l + \sin \theta \sin \varphi \boldsymbol{e}_j \wedge \boldsymbol{e}_m.$$

Since $\{v, w\}$ is an orthonormal basis of $\Pi_{\theta, \varphi}$, bilinearity and symmetricity of K implies

$$(5.1) \qquad k = K(\Pi_{\theta,\varphi}) = K(\mathbf{v} \wedge \mathbf{w}, \mathbf{v} \wedge \mathbf{w})$$

$$= \cos^{2} \theta \cos^{2} \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{i} \wedge \mathbf{e}_{l}) + \cos^{2} \theta \sin^{2} \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{m}, \mathbf{e}_{i} \wedge \mathbf{e}_{m})$$

$$+ \sin^{2} \theta \cos^{2} \varphi K(\mathbf{e}_{j} \wedge \mathbf{e}_{l}, \mathbf{e}_{j} \wedge \mathbf{e}_{l}) + \sin^{2} \theta \sin^{2} \varphi K(\mathbf{e}_{j} \wedge \mathbf{e}_{m}, \mathbf{e}_{j} \wedge \mathbf{e}_{m})$$

$$+ 2 \cos^{2} \theta \cos \varphi \sin \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{i} \wedge \mathbf{e}_{m}) + 2 \cos \theta \sin \theta \cos^{2} \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{j} \wedge \mathbf{e}_{l})$$

$$+ 2 \cos \theta \sin \theta \cos \varphi \sin \varphi (K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{j} \wedge \mathbf{e}_{m}) + K(\mathbf{e}_{i} \wedge \mathbf{e}_{m}, \mathbf{e}_{j} \wedge \mathbf{e}_{l}))$$

$$+ 2 \cos \theta \sin \theta \sin^{2} \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{m}, \mathbf{e}_{j} \wedge \mathbf{e}_{m}) + 2 \sin^{2} \theta \cos \varphi \sin \varphi K(\mathbf{e}_{j} \wedge \mathbf{e}_{l}, \mathbf{e}_{j} \wedge \mathbf{e}_{m})$$

$$= k + 2(\cos^{2} \theta \cos \varphi \sin \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{i} \wedge \mathbf{e}_{m}) + \cos \theta \sin \theta \cos^{2} \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{j} \wedge \mathbf{e}_{l})$$

$$+ \cos \theta \sin \theta \cos \varphi \sin \varphi (K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{j} \wedge \mathbf{e}_{m}) + K(\mathbf{e}_{i} \wedge \mathbf{e}_{m}, \mathbf{e}_{j} \wedge \mathbf{e}_{l}))$$

$$+ \cos \theta \sin \theta \sin^{2} \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{m}, \mathbf{e}_{j} \wedge \mathbf{e}_{m}) + \sin^{2} \theta \cos \varphi \sin \varphi K(\mathbf{e}_{i} \wedge \mathbf{e}_{l}, \mathbf{e}_{j} \wedge \mathbf{e}_{m})).$$

So, by letting $\theta = 0$, we have

(5.2)
$$K(e_i \wedge e_l, e_j \wedge e_m) = 0.$$

Similarly, letting $\theta = \pi/2$, $\varphi = 0$ and $\varphi = \pi/2$, we have $K(e_j \wedge e_l, e_j \wedge e_m) = K(e_i \wedge e_l, e_j \wedge e_l) = K(e_i \wedge e_m, e_j \wedge e_m) = 0$. Hence the equality (5.1) implies

$$K(e_i \wedge e_l, e_i \wedge e_m) + K(e_i \wedge e_m, e_i \wedge e_l) = 0.$$

By definition (4.8), this is equivalent to

$$\kappa_i^m(\boldsymbol{e}_i, \boldsymbol{e}_l) + \kappa_i^l(\boldsymbol{e}_i, \boldsymbol{e}_m) = -(\kappa_m^j(\boldsymbol{e}_i, \boldsymbol{e}_l) + \kappa_l^j(\boldsymbol{e}_i, \boldsymbol{e}_m)).$$

Then by Proposition 4.2, we have

$$0 = \kappa_m^j(\boldsymbol{e}_i, \boldsymbol{e}_l) + \kappa_l^j(\boldsymbol{e}_i, \boldsymbol{e}_m) = \kappa_m^j(\boldsymbol{e}_i, \boldsymbol{e}_l) - \kappa_i^j(\boldsymbol{e}_m, \boldsymbol{e}_l) - \kappa_m^j(\boldsymbol{e}_l, \boldsymbol{e}_i) = 2\kappa_m^j(\boldsymbol{e}_i, \boldsymbol{e}_l) - \kappa_i^j(\boldsymbol{e}_m, \boldsymbol{e}_l).$$

Exchanging the roles of i and m, it holds that $2\kappa_i^j(\mathbf{e}_m, \mathbf{e}_l) - \kappa_m^j(\mathbf{e}_i, \mathbf{e}_l) = 0$. So we have

(5.3)
$$\kappa_i^j(\mathbf{e}_m, \mathbf{e}_l) = 0 \quad (\text{if } \{i, j\} \neq \{m, l\}).$$

On the other hand, (5.2) means that $\kappa_i^j(\mathbf{e}_i, \mathbf{e}_l) = \kappa_i^j(\mathbf{e}_j, \mathbf{e}_l) = 0$ when $l \neq i, j$. Summing up, we have

$$\kappa_i^j(\boldsymbol{e}_k, \boldsymbol{e}_l) = \begin{cases} k & (i, j) = (k, l) \\ 0 & \text{otherwise,} \end{cases}$$

proving the theorem.

We now consider the case that the assumption of Theorem 5.1 holds for each $p \in M$.

Theorem 5.2. Assume that for each p, there exists a real number k(p) such that $K(\Pi_p) = k(p)$ for any $\Pi_p \in Gr_2(T_pM)$. Then the function $k \colon M \ni p \to k(p) \in \mathbb{R}$ is constant provided that M is connected.

Proof. Take the exterior derivative of the definition $\kappa_i^j = d\omega_i^j + \sum_s \omega_s^j \wedge \omega_i^s$, it holds that

$$\begin{split} d\kappa_i^j &= d(d\omega_i^j) + \sum_s d\omega_s^j \wedge \omega_i^s - \sum_s s\omega_s^j \wedge d\omega_i^s \\ &= \sum_s \left(\kappa_s^j - \sum_t \omega_t^j \wedge \omega_s^t\right) \wedge \omega_i^s - \sum_s \omega_s^j \wedge \left(\kappa_i^s - \sum_t \omega_t^s \wedge \omega_i^t\right), \end{split}$$

and hence we have the identity

(5.4)
$$d\kappa_i^j = \sum_s \left(\kappa_s^j \wedge \omega_i^s - \omega_s^j \wedge \kappa_i^s \right),$$

which is known as the second Bianchi identity. By our assumption, Theorem 5.1 implies that $\kappa_i^j = k\omega^i \wedge \omega^j$. Then by Lemma 2.17,

$$\begin{split} d\kappa_i^j &= d(k\omega^i) \wedge \omega^j - k\omega^i \wedge d\omega^j = dk \wedge \omega^i \wedge \omega^j + kd\omega^i \wedge \omega^j - k\omega^i \wedge d\omega^j \\ &= dk \wedge \omega^i \wedge \omega^j + \sum_s k\omega^s \wedge \omega_s^i \wedge \omega^j - \sum_s k\omega^i \wedge \omega^s \wedge \omega_s^j = dk \wedge \omega^i \wedge \omega^j + d\kappa_i^j \end{split}$$

holds for each i and j. Thus, $dk \wedge \omega^i \wedge \omega^j = 0$ for all i and j, which implies dk = 0. This equality is independent of choice of orthonormal frames. Since M is connected, k is constant.

5.2 Space forms

Let (M,g) be a Riemannian n-manifold. A path $\gamma \colon [0,+\infty) \to M$ is said to be a divergence path if for any compact subset $K \in M$, there exists $t_0 \in (0,+\infty)$ such that $\gamma([t_0,+\infty)) \subset M \setminus K$. If any divergent path has infinite length, (M,g) is said to be complete. ⁵In particular, a compact Riemannian manifold (without boundary) is automatically complete.

 $^{^5}$ Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M,g) is complete if any geodesics are defined on entire \mathbb{R} . The definition here is one of the equivalent conditions of completeness, expressed in the Hopf-Rinow theorem.

Definition 5.3. An n-dimensional space form is a complete Riemannian n-manifold of constant sectional curvature.

Example 5.4. The Euclidean n-space is a space form of constant sectional curvature 0. In fact, let (x^1, \ldots, x^n) be the canonical Cartesian coordinate system and set $e_j = \partial/\partial x^j$. Then $[e_j]$ is an orthornormal frame defined on the entire \mathbb{R}^n , and Propositions 3.1 and 3.2 implies that the connection form $\omega_j^i = 0$. Hence the curvature forms vanish, and then the sectional curvature is identically zero.

So it is sufficient to show completeness. Let $\gamma: [0, +\infty) \to \mathbb{R}^n$ be a divergent path. Then for each r > 0, there exists $t_0 > 0$ such that $|\gamma(t)| > r$ holds on $[t_0, +\infty)$, equivalently, $|\gamma(t)| \to +\infty$ as $t \to +\infty$. So the length L of the curve γ is

$$L = \lim_{t \to +\infty} \int_0^t |\dot{\gamma}(\tau)| \, d\tau \ge \lim_{t \to +\infty} \left| \int_0^t \dot{\gamma}(\tau) \, d\tau \right| = \lim_{t \to +\infty} |\gamma(t) - \gamma(0)| \ge \lim_{t \to +\infty} |\gamma(t)| - |\gamma(0)| = +\infty.$$

Here, we used the triangle inequality of integrals for vector-valued functions⁶.

5.3 The Hyperbolic spaces

Let $H^n(-c^2)$ be the hyperbolic n-space defined in Example 1.8, where c is a non-zero constant:

$$H^n(-c^2) := \left\{ \boldsymbol{x} = (x^0, \dots, x^n) \in \mathbb{R}^{n+1}_1 \,\middle|\, \left\langle \boldsymbol{x}, \boldsymbol{x} \right\rangle_L = -\frac{1}{c^2}, cx_0 > 0 \right\},$$

where $(\mathbb{R}_1^{n+1}, \langle , \rangle_L)$ be the Lorentz-Minkowski (n+1)-space as in Example 1.7. The tangent space $T_{\boldsymbol{x}}H^n(-c^2)$ is the orthogonal complement \boldsymbol{x}^\perp of \boldsymbol{x} , and the restriction g_H of the inner product \langle , \rangle_L to $T_{\boldsymbol{x}}H^n(-c^2)$ is positive definite. Thus, $(H^n(-c^2), g_H)$ is a Riemannian manifold, called the *hyperbolic n-space*.

Theorem 5.5. The hyperbolic space $(H^n(-c^2), g_H)$ is of constant sectional curvature $-c^2$.

Proof. Notice that $H^n(-c^2)$ can be expressed as a graph $x^0 = \frac{1}{c}\sqrt{1+c^2\left((x^1)^2+\cdots+(x^n)^2\right)}$ defined on the (x^1,\ldots,x^n) -hyperplane, it is covered by single chart. Then there exists a orthonormal frame field $[e_1,\ldots,e_n]$ defined on entire $H^n(-c^2)$. Denote by (ω^i) , $\Omega=(\omega_i^j)$ and $K=(\kappa_i^j)$ the dual frame, the connection form and the curvature form with respect to $[e_i]$, respectively.

Regarding $T_{\boldsymbol{x}}H^n(-c^2)$ as a linear subspace in \mathbb{R}^{n+1}_1 , we can consider \boldsymbol{e}_j as a vector-valued function. In addition the position vector $\boldsymbol{x} \in H^n(-c^2)$ can be also regarded as a vector-valued function. Since $T_{\boldsymbol{x}}H^n(-c^2) = \boldsymbol{x}^{\perp}$,

(5.5)
$$\mathcal{F} := (\boldsymbol{e}_0, \boldsymbol{e}_1, \dots, \boldsymbol{e}_n) \colon H^n(-c^2) \to \mathcal{M}_{n+1}(\mathbb{R}) \qquad \boldsymbol{e}_0 = c\boldsymbol{x}$$

gives a pseudo orthornormal frame along $H^n(-c^2)$, that is, ${}^t\mathcal{F}Y\mathcal{F}=Y$ $(Y:=\mathrm{diag}(-1,1,\ldots,1))$ holds.

As seen in Exercise 4-2, it holds that

(5.6)
$$d\mathbf{e}_0 = cd\mathbf{x} = c\sum_{j=1}^n \omega^j \mathbf{e}_j.$$

On the other hand, for each $j=1,\ldots,n$, decompose the vector-valued one form de_i as

$$d\boldsymbol{e}_j = h_j \boldsymbol{e}_0 + \sum_s \alpha_j^s \boldsymbol{e}_s,$$

⁶See, for example, Theorem A.1.4 in [UY17] for n=2. The idea of the proof works for general n.

where h_j and α_j^s are one forms on $H^n(-c^2)$. Here,

$$h_j = -\langle d\mathbf{e}_j, \mathbf{e}_0 \rangle_L = -d \langle \mathbf{e}_j, \mathbf{e}_0 \rangle_L + \langle \mathbf{e}_j, d\mathbf{e}_0 \rangle_L = c\omega^j,$$

and

$$\alpha_j^s = \langle d\mathbf{e}_j, \mathbf{e}_s \rangle_L = d \langle \mathbf{e}_j, \mathbf{e}_s \rangle_L - \langle \mathbf{e}_j, d\mathbf{e}_s \rangle_L = -\alpha_s^j.$$

Differentiating (5.6), it holds that

$$0 = \frac{1}{c} dd\mathbf{e}_0 = \sum_j (d\omega^j \mathbf{e}_j - \omega^j \wedge d\mathbf{e}_j) = \sum_{j,s} \omega^s \wedge \omega_s^j \mathbf{e}_j - \sum_{j,s} \omega^j \wedge \alpha_j^s \mathbf{e}_s = \sum_j \sum_s \omega^s \wedge (\omega_s^j - \alpha_s^j) \mathbf{e}_j$$

because $\omega^j \wedge \omega^j = 0$. Thus, we have $\sum_s \omega^s \wedge (\omega_s^j - \alpha_s^j) = 0$, and then

$$0 = \left(\sum_{s} \omega^{s} \wedge (\omega_{s}^{j} - \alpha_{s}^{j})\right) (\boldsymbol{e}_{l}, \boldsymbol{e}_{m}) = (\omega_{l}^{j}(\boldsymbol{e}_{m}) - \alpha_{l}^{j}(\boldsymbol{e}_{m})) - (\omega_{m}^{j}(\boldsymbol{e}_{l}) - \alpha_{m}^{j}(\boldsymbol{e}_{l})),$$

$$0 = (\omega_{j}^{m}(\boldsymbol{e}_{l}) - \alpha_{j}^{m}(\boldsymbol{e}_{l})) - (\omega_{l}^{m}(\boldsymbol{e}_{j}) - \alpha_{l}^{m}(\boldsymbol{e}_{j})) = -(\omega_{m}^{j}(\boldsymbol{e}_{l}) - \alpha_{m}^{j}(\boldsymbol{e}_{l})) - (\omega_{l}^{m}(\boldsymbol{e}_{j}) - \alpha_{l}^{m}(\boldsymbol{e}_{j})),$$

$$0 = (\omega_{m}^{l}(\boldsymbol{e}_{j}) - \alpha_{m}^{l}(\boldsymbol{e}_{j})) - (\omega_{l}^{l}(\boldsymbol{e}_{m}) - \alpha_{l}^{l}(\boldsymbol{e}_{m})) = -(\omega_{l}^{m}(\boldsymbol{e}_{j}) - \alpha_{l}^{m}(\boldsymbol{e}_{j})) + (\omega_{l}^{j}(\boldsymbol{e}_{m}) - \alpha_{l}^{j}(\boldsymbol{e}_{m})).$$

which conclude that $\omega_I^j = \alpha_I^j$. Summing up, we have

$$d\mathbf{e}_j = c\omega^j \mathbf{e}_0 + \sum_s \omega_j^s \mathbf{e}_s.$$

Then the frame \mathcal{F} in (5.5) satisfies

(5.8)
$$d\mathcal{F} = \mathcal{F}\widetilde{\Omega}, \quad \text{where} \quad \widetilde{\Omega} = \begin{pmatrix} 0 & c^t \boldsymbol{\omega} \\ c \boldsymbol{\omega} & \Omega \end{pmatrix} \quad \text{and} \quad \boldsymbol{\omega} := {}^t (\omega^1, \dots, \omega^n).$$

The integrability condition of (5.8) is

$$O = d\widetilde{\Omega} + \widetilde{\Omega} \wedge \widetilde{\Omega} = \begin{pmatrix} c^{2t} \boldsymbol{\omega} \wedge \boldsymbol{\omega} & c \left(d^t \boldsymbol{\omega} + {}^t \boldsymbol{\omega} \wedge \Omega \right) \\ c \left(d \boldsymbol{\omega} + \Omega \wedge \boldsymbol{\omega} \right) & d\Omega + \Omega \wedge \Omega + c^2 \boldsymbol{\omega} \wedge {}^t \boldsymbol{\omega} \end{pmatrix}.$$

The lower-right components of the identity above yields

$$\kappa_i^j + c^2 \omega^i \wedge \omega^j = 0.$$

Hence the sectional curvature of $(H^n(-c^2), g_H) = -c^2$.

Remark 5.6. One can show the completeness of $(H^n(-c^2), g_H)$. Hence the hyperbolic space is a simply connected space form of negative sectional curvature.

Exercises

5-1 Prove that the sphere

$$S^n(c^2) = \left\{ oldsymbol{x} \in \mathbb{R}^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = rac{1}{c^2}
ight\}$$

of radius 1/c in the Eucidean n+1-space is of constant sectional curvature c^2 .

5-2 Let $f: U \to \mathbb{R}^{n+1}$ be an immersion defined on a domain $U \subset \mathbb{R}^n$, and ν a unit normal vector field. Take an orthornormal frame $[e_1, \ldots, e_n]$ of the tangent bundle of U, and consider each e_i a map into \mathbb{R}^{n+1} . In addition, we consider ν an \mathbb{R}^{n+1} -valued function. Prove that

$$d\nu = -\sum_{j} h^{j} \boldsymbol{e}_{j}, \quad \text{where} \quad h^{j} := \langle d\boldsymbol{e}_{j}, \nu \rangle.$$