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5 Space forms

5.1 Constant sectional curvature

Let (M, g) be a Riemannian n-manifold, and let

Gr2(TM) := ∪p Gr2(TpM),

Gr2(TpM) := 2-Grassmannian of TpM = {Πp ⊂ TpM ; 2-dimensional subspace}.

The sectional curvature defined in Definition 4.5 is a map K : Gr2(TM) → R such that

K(Πp) := K(v ∧w,v ∧w),

where {v,w} is the orthonormal basis of Πp.
Fix a point p, and take an orthornormal frame [e1, . . . , en] defined on a neighborhood U of p.

Denote by (ωj), Ω = (ωj
i ) and K = (κj

i ) the dual frame, the connection form and the curvature
form with respect to the frame [ej ], respectively.

Theorem 5.1. Assume there exists a real number k such that K(Πp) = k for all 2-dimensional
subspace Πp ∈ TpM for a fixed p. Then the curvature form is expressed as

κi
j = kωi ∧ ωj .

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.

Proof. By the assumption, k = K(Span{ei, ej}) = K(ei ∧ ej , ei ∧ ej)] = κi
j(ei, ej). Let

v := cos θei + sin θej , w := cosϕel + sinϕem

where {i, j} 6= {l,m}, and set Πθ,ϕ := Span{v,w} ⊂ TpM . Then by biliniearity of the ∧-product
on TpM , it holds that

v ∧w = cos θ cosϕei ∧ el + cos θ sinϕei ∧ em + sin θ cosϕej ∧ el + sin θ sinϕej ∧ em.

Since {v,w} is an orthonormal basis of Πθ,ϕ, biliniearity and symmetricity of K implies

k =K(Πθ,ϕ) = K(v ∧w,v ∧w)(5.1)
=cos2 θ cos2 ϕK(ei ∧ el, ei ∧ el) + cos2 θ sin2 ϕK(ei ∧ em, ei ∧ em)

+ sin2 θ cos2 ϕK(ej ∧ el, ej ∧ el) + sin2 θ sin2 ϕK(ej ∧ em, ej ∧ em)

+ 2 cos2 θ cosϕ sinϕK(ei ∧ el, ei ∧ em) + 2 cos θ sin θ cos2 ϕK(ei ∧ el, ej ∧ el)

+ 2 cos θ sin θ cosϕ sinϕ(K(ei ∧ el, ej ∧ em +K(ei ∧ em, ej ∧ el))

+ 2 cos θ sin θ sin2 ϕK(ei ∧ em, ej ∧ em) + 2 sin2 θ cosϕ sinϕK(ej ∧ el, ej ∧ em)

=k + 2
(
cos2 θ cosϕ sinϕK(ei ∧ el, ei ∧ em) + cos θ sin θ cos2 ϕK(ei ∧ el, ej ∧ el)

+ cos θ sin θ cosϕ sinϕ(K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el))

+ cos θ sin θ sin2 ϕK(ei ∧ em, ej ∧ em) + sin2 θ cosϕ sinϕK(ej ∧ el, ej ∧ em)
)
.

So, by letting θ = 0, we have

(5.2) K(ei ∧ el, ej ∧ em) = 0.

Similarly, letting θ = π/2, ϕ = 0 and ϕ = π/2, we have K(ej ∧el, ej ∧em) = K(ei ∧el, ej ∧el) =
K(ei ∧ em, ej ∧ em) = 0. Hence the equality (5.1) implies

K(ei ∧ el, ej ∧ em) +K(ei ∧ em, ej ∧ el) = 0.
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By definition (4.8), this is equivalent to

κm
j (ei, el) + κl

j(ei, em) = −(κj
m(ei, el) + κj

l (ei, em)).

Then by Proposition 4.2, we have

0 = κj
m(ei, el) + κj

l (ei, em) = κj
m(ei, el)− κj

i (em, el)− κj
m(el, ei) = 2κj

m(ei, el)− κj
i (em, el).

Exchanging the roles of i and m, it holds that 2κj
i (em, el)− κj

m(ei, el) = 0. So we have

(5.3) κj
i (em, el) = 0 (if {i, j} 6= {m, l}).

On the other hand, (5.2) means that κj
i (ei, el) = κj

i (ej , el) = 0 when l 6= i, j. Summing up, we
have

κj
i (ek, el) =

{
k (i, j) = (k, l)

0 otherwise,

proving the theorem.

We now consider the case that the assumption of Theorem 5.1 holds for each p ∈ M .

Theorem 5.2. Assume that for each p, there exists a real number k(p) such that K(Πp) = k(p)
for any Πp ∈ Gr2(TpM). Then the function k : M 3 p → k(p) ∈ R is constant provided that M is
connected.

Proof. Take the exterior derivative of the definition κj
i = dωj

i +
∑

s ω
j
s ∧ ωs

i , it holds that

dκj
i = d(dωj

i ) +
∑
s

dωj
s ∧ ωs

i −
∑
s

sωj
s ∧ dωs

i

=
∑
s

(
κj
s −

∑
t

ωj
t ∧ ωt

s

)
∧ ωs

i −
∑
s

ωj
s ∧

(
κs
i −

∑
t

ωs
t ∧ ωt

i

)
,

and hence we have the identity

(5.4) dκj
i =

∑
s

(
κj
s ∧ ωs

i − ωj
s ∧ κs

i

)
,

which is known as the second Bianchi identity. By our assumption, Theorem 5.1 implies that
κj
i = kωi ∧ ωj . Then by Lemma 2.17,

dκj
i = d(kωi) ∧ ωj − kωi ∧ dωj = dk ∧ ωi ∧ ωj + kdωi ∧ ωj − kωi ∧ dωj

= dk ∧ ωi ∧ ωj +
∑
s

kωs ∧ ωi
s ∧ ωj −

∑
s

kωi ∧ ωs ∧ ωj
s = dk ∧ ωi ∧ ωj + dκj

i

holds for each i and j. Thus, dk ∧ ωi ∧ ωj = 0 for all i and j, which implies dk = 0. This equality
is independent of choice of orthonormal frames. Since M is connected, k is constant.

5.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path γ : [0,+∞) → M is said to be a divergence path
if for any compact subset K ∈ M , there exists t0 ∈ (0,+∞) such that γ([t0,+∞)) ⊂ M \ K. If
any divergent path has infinite length, (M, g) is said to be complete. 5In particular, a compact
Riemannian manifold (without boundary) is automatically complete.

5Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics
are defined on entire R. The definition here is one of the equivalent conditions of completeness, expressed in the
Hopf-Rinow theorem.
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Definition 5.3. An n-dimensional space form is a complete Riemannian n-manifold of constant
sectional curvature.

Example 5.4. The Euclidean n-space is a space form of constant sectional curvature 0. In fact,
let (x1, . . . , xn) be the canonical Cartesian coordinate system and set ej = ∂/∂xj . Then [ej ] is
an orthornormal frame defined on the entire Rn, and Propositions 3.1 and 3.2 implies that the
connection form ωi

j = 0. Hence the curvature forms vanish, and then the sectional curvature is
identically zero.

So it is sufficient to show completeness. Let γ : [0,+∞) → Rn be a divergent path. Then for
each r > 0, there exists t0 > 0 such that |γ(t)| > r holds on [t0,+∞), equivalently, |γ(t)| → +∞
as t → +∞. So the length L of the curve γ is

L = lim
t→+∞

∫ t

0

|γ̇(τ)| dτ = lim
t→+∞

∣∣∣∣∫ t

0

γ̇(τ) dτ

∣∣∣∣ = lim
t→+∞

|γ(t)− γ(0)| = lim
t→+∞

|γ(t)| − |γ(0)| = +∞.

Here, we used the triangle inequality of integrals for vector-valued functions6.

5.3 The Hyperbolic spaces

Let Hn(−c2) be the hyperbolic n-space defined in Example 1.8, where c is a non-zero constant:

Hn(−c2) :=

{
x = (x0, . . . , xn) ∈ Rn+1

1

∣∣∣∣ 〈x,x〉L = − 1

c2
, cx0 > 0

}
,

where (Rn+1
1 , 〈 , 〉L) be the Lorentz-Minkowski (n+1)-space as in Example 1.7. The tangent space

TxH
n(−c2) is the orthogonal complement x⊥ of x, and the restriction gH of the inner product

〈 , 〉L to TxH
n(−c2) is positive definite. Thus, (Hn(−c2), gH) is a Riemannian manifold, called

the hyperbolic n-space.

Theorem 5.5. The hyperbolic space (Hn(−c2), gH) is of constant sectional curvature −c2.

Proof. Notice that Hn(−c2) can be expressed as a graph x0 = 1
c

√
1 + c2 ((x1)2 + · · ·+ (xn)2) de-

fined on the (x1, . . . , xn)-hyperplane, it is covered by single chart. Then there exists a orthonormal
frame field [e1, . . . , en] defined on entire Hn(−c2). Denote by (ωi), Ω = (ωj

i ) and K = (κj
i ) the

dual frame, the connection form and the curvature form with respect to [ej ], respectively.
Regarding TxH

n(−c2) as a linear subspace in Rn+1
1 , we can consider ej as a vector-valued

function. In addition the position vector x ∈ Hn(−c2) can be also regarded as a vector-valued
function. Since TxH

n(−c2) = x⊥,

(5.5) F := (e0, e1, . . . , en) : H
n(−c2) → Mn+1(R) e0 = cx

gives a pseudo orthornormal frame along Hn(−c2), that is, tFY F = Y (Y := diag(−1, 1, . . . , 1))
holds.

As seen in Exercise 4-2, it holds that

(5.6) de0 = cdx = c

n∑
j=1

ωjej .

On the other hand, for each j = 1, . . . , n, decompose the vector-valued one form dej as

dej = hje0 +
∑
s

αs
jes,

6See, for example, Theorem A.1.4 in [UY17] for n = 2. The idea of the proof works for general n.
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where hj and αs
j are one forms on Hn(−c2). Here,

hj = −〈dej , e0〉L = −d 〈ej , e0〉L + 〈ej , de0〉L = cωj ,

and
αs
j = 〈dej , es〉L = d 〈ej , es〉L − 〈ej , des〉L = −αj

s.

Differentiating (5.6), it holds that

0 =
1

c
dde0 =

∑
j

(dωjej − ωj ∧ dej) =
∑
j,s

ωs ∧ ωj
sej −

∑
j,s

ωj ∧ αs
jes =

∑
j

∑
s

ωs ∧ (ωj
s − αj

s)ej

because ωj ∧ ωj = 0. Thus, we have
∑

s ω
s ∧ (ωj

s − αj
s) = 0, and then

0 =

(∑
s

ωs ∧ (ωj
s − αj

s)

)
(el, em) = (ωj

l (em)− αj
l (em))− (ωj

m(el)− αj
m(el)),

0 = (ωm
j (el)− αm

j (el))− (ωm
l (ej)− αm

l (ej)) = −(ωj
m(el)− αj

m(el))− (ωm
l (ej)− αm

l (ej)),

0 = (ωl
m(ej)− αl

m(ej))− (ωl
j(em)− αl

j(em)) = −(ωm
l (ej)− αm

l (ej)) + (ωj
l (em)− αj

l (em)),

which conclude that ωj
l = αj

l . Summing up, we have

(5.7) dej = cωje0 +
∑
s

ωs
jes.

Then the frame F in (5.5) satisfies

(5.8) dF = FΩ̃, where Ω̃ =

(
0 ctω
cω Ω

)
and ω :=

t
(ω1, . . . , ωn).

The integrability condition of (5.8) is

O = dΩ̃ + Ω̃ ∧ Ω̃ =

(
c2tω ∧ ω c (dtω + tω ∧Ω)

c (dω +Ω ∧ ω) dΩ +Ω ∧Ω + c2ω ∧ tω

)
.

The lower-right components of the identity above yields

κj
i + c2ωi ∧ ωj = 0.

Hence the sectional curvature of (Hn(−c2), gH) = −c2.

Remark 5.6. One can show the completeness of (Hn(−c2), gH). Hence the hyperbolic space is a
simply connected space form of negative sectional curvature.

Exercises

5-1 Prove that the sphere

Sn(c2) =

{
x ∈ Rn+1 ; 〈x,x〉 = 1

c2

}
of radius 1/c in the Eucidean n+ 1-space is of constant sectional curvature c2.

5-2 Letf : U → Rn+1 be an immersion defined on a domain U ⊂ Rn, and ν a unit normal vector
field. Take an orthornormal frame [e1, . . . , en] of the tangent bundle of U , and consider each
ej a map into Rn+1. In addition, we consider ν an Rn+1-valued function. Prove that

dν = −
∑
j

hjej , where hj := 〈dej , ν〉 .


