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5 Space forms

5.1 Constant sectional curvature
Let (M, g) be a Riemannian n-manifold, and let
Gra(TM) := U, Gra(T, M),
Gro(Tp,M) = 2-Grassmannian of T, M = {II,, C T,M ; 2-dimensional subspace}.
The sectional curvature defined in Definition 4.5 is a map K: Gro(TM) — R such that
K(II,) == K(v ANw,v A w),

where {v, w} is the orthonormal basis of II,,.

Fix a point p, and take an orthornormal frame [ey,...,e,] defined on a neighborhood U of p.
Denote by (w’), 2 = (w!) and K = (k) the dual frame, the connection form and the curvature
form with respect to the frame [e;], respectively.

Theorem 5.1. Assume there exists a real number k such that K(IL,) = k for all 2-dimensional
subspace 11, € T,M for a fized p. Then the curvature form is expressed as

H; =kw' Aw’.
Conversely, the curvature form is written as above, the sectional curvature at p is constant k.
Proof. By the assumption, k = K (Span{e;,e;}) = K(e; A ej, e; A ej)] = r%(e;, e;). Let
v := cos fe; + sinfe;, w = cos pe; + sin pe,,
where {3, 5} # {l,m}, and set Iy , := Span{v,w} C T, M. Then by biliniearity of the A-product
on T, M, it holds that
v A w = cosfcospe; A e + cosfsinpe; A e, + sinf cospe; A e +sinldsinpe; A ey,.
Since {v, w} is an orthonormal basis of Il ., biliniearity and symmetricity of K implies
(5.1) k=K(Ilp,) = K(vAw,vAw)
=cos? O cos® oK (e; A ej,e; Ae) +cos? Osin oK (e; A e, e; Aen)
+ sin? 6 cos® oK(e;jNejej Nep)+ sin? 6 sin? oK (e; Nem. e Ney)
+ 2cos? 6 cos psin oK(e; Neje; Ney)+2 cos 0 sin 6 cos® oK(e; Nej,ej Nejp)
+2cosfsinfcospsinp(K(e; Nej,ej Aey+ K(eAem,e; Aep))
+ 2 cos 0 sin 0 sin® oK (e Nem,e; Ney)+ 2sin? 6 cos @ sin oK(e; Nej,ej Nen)
=k + 2(cos2 6 cos psin K (e; A ej, e; A ey,) + cosfsin b cos® oK (e; A ey, e; Nep)
+ cosfsinfcospsin p(K(e; Nej,e; ANey) + K(e; Aen,ej Aep))
+ cosfsinfsin® 9K (e; A ey, ejNey)+ sin? 6 cos ¢ sin vK(ej Nej,ej A em)).
So, by letting § = 0, we have
(5.2) K(e;Nej,ej Ney) =0.
Similarly, letting 6 = 7/2, ¢ = 0 and ¢ = 7/2, we have K(e; Aej, e; Ney) = K(e;Nej,ejAep) =
K(e; A\ en,e; Aeyp)=0. Hence the equality (5.1) implies

K(eiNej,ejNey)+ K(e; Ney,e; Aey) =0.
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By definition (4.8), this is equivalent to
Ky (e, er) + né(ei, em) = —(x (e, e) + ﬁ{(ei, emn)).
Then by Proposition 4.2, we have
0= /fin(ei, e+ /{{(ei, en) = /{-Zn(ei, e)— n{(em, e) — /ifn(el, e;) = 25{,1((31-, e — /ig(em, e).

Exchanging the roles of i and m, it holds that 2«7 (e, e;) — #, (e, e;) = 0. So we have

(5.3) wi(em,e) =0 (f {i,j} # {m,1}).
On the other hand, (5.2) means that /@g(ei,el) = f-@g(ej,el) = 0 when [ # ¢,j. Summing up, we
have
4 k 1, 5) = (k1
en e — (i) = (k1)
0 otherwise,

proving the theorem. O
We now consider the case that the assumption of Theorem 5.1 holds for each p € M.

Theorem 5.2. Assume that for each p, there exists a real number k(p) such that K(II,) = k(p)
for any I1, € Gra(T,M). Then the function k: M > p — k(p) € R is constant provided that M is
connected.

Proof. Take the exterior derivative of the definition /{g = dwf + Y, wl Awi, it holds that

d] = d(dw]) + > dwl Awf = swl A dw]

:Z (ﬁﬁZw{/\wﬁ) /\wfwag/\ (anwi/\wf),
s t

s t
and hence we have the identity
(5.4) drl = Z (K] Awf —wl AKS),
5
which is known as the second Bianchi identity. By our assumption, Theorem 5.1 implies that
K] = kw' Aw’. Then by Lemma 2.17,
dn{ = d(kw') Aw! — kw' Adw’ = dk Aw' Aw? + kdw' Aw! — kw' A dw’
=dk AW AW+ kot Awh AW = kw' Aw' Awl = dk Aw' Aw! + di]
5 5

holds for each i and j. Thus, dk A w? Aw? = 0 for all ¢ and j, which implies dk = 0. This equality
is independent of choice of orthonormal frames. Since M is connected, k is constant. O

5.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path v: [0, +00) — M is said to be a divergence path
if for any compact subset K € M, there exists ¢y € (0,+00) such that v([tg, +o0)) C M\ K. If
any divergent path has infinite length, (M, g) is said to be complete. °In particular, a compact
Riemannian manifold (without boundary) is automatically complete.

5Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics
are defined on entire R. The definition here is one of the equivalent conditions of completeness, expressed in the
Hopf-Rinow theorem.
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Definition 5.3. An n-dimensional space form is a complete Riemannian n-manifold of constant
sectional curvature.

Example 5.4. The Euclidean n-space is a space form of constant sectional curvature 0. In fact,
let (z',...,2") be the canonical Cartesian coordinate system and set e; = 9/9z7. Then [e;] is
an orthornormal frame defined on the entire R™, and Propositions 3.1 and 3.2 implies that the
connection form w} = 0. Hence the curvature forms vanish, and then the sectional curvature is
identically zero.

So it is sufficient to show completeness. Let v: [0,4+00) — R™ be a divergent path. Then for
each r > 0, there exists ¢ty > 0 such that |y(¢)| > r holds on [tg, +o0), equivalently, |y(t)] — +oo
as t — +o00. So the length L of the curve ~ is

/0 () dr
6

Here, we used the triangle inequality of integrals for vector-valued functions®.

= lim [y(t) =7(0)| 2 lim [y(t)] = [7(0)] = +o0.

t—+oo — t—+oo

t
L= lim / [%(7)|dr = lim
0

t—+oo — t—+4oo

5.3 The Hyperbolic spaces

Let H"(—c?) be the hyperbolic n-space defined in Example 1.8, where c is a non-zero constant:
n 2 0 n n+1 1
H'"(—c¢*):=qx=(2",...,2") e R] (@), = ——,cx0>0¢,
c

where (R, (| ),) be the Lorentz-Minkowski (n+ 1)-space as in Example 1.7. The tangent space
T H"(—c?) is the orthogonal complement ! of x, and the restriction gg of the inner product
(, ) to TxgH™(—c?) is positive definite. Thus, (H"(—c?), gn) is a Riemannian manifold, called
the hyperbolic n-space.

Theorem 5.5. The hyperbolic space (H™(—c?), gx) is of constant sectional curvature —c?.

Proof. Notice that H"(—c?) can be expressed as a graph 2° = 1/1+ 2 ((z1)2 + -+ + (z")?) de-
fined on the (z?, ..., 2")-hyperplane, it is covered by single chart. Then there exists a orthonormal
frame field [eq,...,e,] defined on entire H"(—c?). Denote by (w'), 2 = (w!) and K = (x!) the
dual frame, the connection form and the curvature form with respect to [e;], respectively.

Regarding T H"(—c?) as a linear subspace in R’f“, we can consider e; as a vector-valued
function. In addition the position vector x € H"(—c?) can be also regarded as a vector-valued
function. Since T H"(—c?) = zt,

(5.5) F = (eo,e1,...,€n): H'(—=c?) = M, 1(R) ey =cx

gives a pseudo orthornormal frame along H"(—c?), that is, "FYF =Y (Y := diag(—1,1,...,1))
holds.
As seen in Exercise 4-2, it holds that

n
(5.6) deg = cdx = cijej.
j=1
On the other hand, for each j =1,...,n, decompose the vector-valued one form de; as

dej = hjeq + E a‘;es,
S

6See, for example, Theorem A.1.4 in [UY17] for n = 2. The idea of the proof works for general n.
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where h; and o are one forms on H"(—c?). Here,

hj = — (dej,e())L =—d <6j,60>L + <6j,deo>L = ij,

and

s __

a; (dej,es), =d(ej,es), — (ej,des), = —al.
Differentiating (5.6), it holds that
0= - ddeg = Z(dw]ej —w! ANdej) = Zws ANwle; — ij Najes = ZZW" A (Wl —al)e;
J»s Jss s

J J

because w’ A w? = 0. Thus, we have >, w® A (w! — ad) =0, and then

0= (Z WA (Wl — ai)) (€1, em) = (] (em) — ] (em)) — (Wi (er) — ad, (1)),

(w]"(e1) = af'(er)) = (Wi (e5) — 0" (€)) = —(wh,(er) — o (1)) = (w]" (€)) — o] (e;)),
= (Wi (e5) — ap(€))) = (Wilem) — af(em)) = —(w]"(e;) — af"(e))) + (w] (em) — of (em)),

which conclude that wlj = a{ . Summing up, we have

0
0

(5.7) de;j = cw’eq + ij»es.
Then the frame F in (5.5) satisfies
~ - ¢
(5.8) dF = FQ,  where 2= (c(c)u C;;’) and w:="(w!,...,w").

The integrability condition of (5.8) is

T Alwnw c(dw+'twAR)
O—dQ+QAQ—<C .

(dw+ R ANw) d2+ 2N+ AwAiw
The lower-right components of the identity above yields
Iﬁ;z + Wi Aw! =0.
Hence the sectional curvature of (H"(—c?),gn) = —c?. O
Remark 5.6. One can show the completeness of (H"(—c?),gg). Hence the hyperbolic space is a
simply connected space form of negative sectional curvature.
Ezxercises
5-1 Prove that the sphere
Sm(c?) = {a: eER™ (z,x) = 012}
2

of radius 1/c in the Eucidean n + 1-space is of constant sectional curvature c*.

5-2 Letf: U — R""! be an immersion defined on a domain U C R", and v a unit normal vector
field. Take an orthornormal frame [eq,. .., e,] of the tangent bundle of U, and consider each
e; a map into R"™!. In addition, we consider v an R"*!-valued function. Prove that

dv = — Z he;, where b = (de;,v).
J



