5 Space forms

5.1 Constant sectional curvature

Let (M, g) be a Riemannian n-manifold, and let

$$
\begin{aligned}
\operatorname{Gr}_{2}(T M):= & \cup_{p} \operatorname{Gr}_{2}\left(T_{p} M\right) \\
& \operatorname{Gr}_{2}\left(T_{p} M\right):=2 \text {-Grassmannian of } T_{p} M=\left\{\Pi_{p} \subset T_{p} M ; \text { 2-dimensional subspace }\right\} .
\end{aligned}
$$

The sectional curvature defined in Definition 4.5 is a map $K: \operatorname{Gr}_{2}(T M) \rightarrow \mathbb{R}$ such that

$$
K\left(\Pi_{p}\right):=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w})
$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is the orthonormal basis of Π_{p}.
Fix a point p, and take an orthornormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ defined on a neighborhood U of p. Denote by $\left(\omega^{j}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ the dual frame, the connection form and the curvature form with respect to the frame $\left[\boldsymbol{e}_{j}\right]$, respectively.
Theorem 5.1. Assume there exists a real number k such that $K\left(\Pi_{p}\right)=k$ for all 2-dimensional subspace $\Pi_{p} \in T_{p} M$ for a fixed p. Then the curvature form is expressed as

$$
\kappa_{j}^{i}=k \omega^{i} \wedge \omega^{j}
$$

Conversely, the curvature form is written as above, the sectional curvature at p is constant k.
Proof. By the assumption, $\left.k=K\left(\operatorname{Span}\left\{\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{j}\right)\right]=\kappa_{j}^{i}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$. Let

$$
\boldsymbol{v}:=\cos \theta \boldsymbol{e}_{i}+\sin \theta \boldsymbol{e}_{j}, \quad \boldsymbol{w}:=\cos \varphi \boldsymbol{e}_{l}+\sin \varphi \boldsymbol{e}_{m}
$$

where $\{i, j\} \neq\{l, m\}$, and set $\Pi_{\theta, \varphi}:=\operatorname{Span}\{\boldsymbol{v}, \boldsymbol{w}\} \subset T_{p} M$. Then by biliniearity of the \wedge-product on $T_{p} M$, it holds that

$$
\boldsymbol{v} \wedge \boldsymbol{w}=\cos \theta \cos \varphi \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}+\cos \theta \sin \varphi \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}+\sin \theta \cos \varphi \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}+\sin \theta \sin \varphi \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}
$$

Since $\{\boldsymbol{v}, \boldsymbol{w}\}$ is an orthonormal basis of $\Pi_{\theta, \varphi}$, biliniearity and symmetricity of \boldsymbol{K} implies

$$
\begin{align*}
k= & K\left(\Pi_{\theta, \varphi}\right)=\boldsymbol{K}(\boldsymbol{v} \wedge \boldsymbol{w}, \boldsymbol{v} \wedge \boldsymbol{w}) \tag{5.1}\\
= & \cos ^{2} \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}\right)+\cos ^{2} \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right) \\
& +\sin ^{2} \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)+\sin ^{2} \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right) \\
& +2 \cos ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)+2 \cos \theta \sin \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right) \\
& +2 \cos \theta \sin \theta \cos \varphi \sin \varphi\left(\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right)\right. \\
& +2 \cos \theta \sin \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+2 \sin ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right) \\
= & k+2\left(\cos ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}\right)+\cos \theta \sin \theta \cos ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right. \\
& +\cos \theta \sin \theta \cos \varphi \sin \varphi\left(\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)\right) \\
& \left.+\cos \theta \sin \theta \sin ^{2} \varphi \boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\sin ^{2} \theta \cos \varphi \sin \varphi \boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)\right)
\end{align*}
$$

So, by letting $\theta=0$, we have

$$
\begin{equation*}
\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=0 \tag{5.2}
\end{equation*}
$$

Similarly, letting $\theta=\pi / 2, \varphi=0$ and $\varphi=\pi / 2$, we have $\boldsymbol{K}\left(\boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=$ $\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)=0$. Hence the equality (5.1) implies

$$
\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{l}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{m}\right)+\boldsymbol{K}\left(\boldsymbol{e}_{i} \wedge \boldsymbol{e}_{m}, \boldsymbol{e}_{j} \wedge \boldsymbol{e}_{l}\right)=0
$$

19. July, 2022. Revised: 26. July, 2022

By definition (4.8), this is equivalent to

$$
\kappa_{j}^{m}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{j}^{l}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)=-\left(\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)\right) .
$$

Then by Proposition 4.2, we have

$$
0=\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)+\kappa_{l}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{m}\right)=\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)-\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)-\kappa_{m}^{j}\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{i}\right)=2 \kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)-\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)
$$

Exchanging the roles of i and m, it holds that $2 \kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)-\kappa_{m}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)=0$. So we have

$$
\begin{equation*}
\kappa_{i}^{j}\left(\boldsymbol{e}_{m}, \boldsymbol{e}_{l}\right)=0 \quad(\text { if }\{i, j\} \neq\{m, l\}) \tag{5.3}
\end{equation*}
$$

On the other hand, (5.2) means that $\kappa_{i}^{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{l}\right)=\kappa_{i}^{j}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{l}\right)=0$ when $l \neq i, j$. Summing up, we have

$$
\kappa_{i}^{j}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)= \begin{cases}k & (i, j)=(k, l) \\ 0 & \text { otherwise }\end{cases}
$$

proving the theorem.
We now consider the case that the assumption of Theorem 5.1 holds for each $p \in M$.
Theorem 5.2. Assume that for each p, there exists a real number $k(p)$ such that $K\left(\Pi_{p}\right)=k(p)$ for any $\Pi_{p} \in \operatorname{Gr}_{2}\left(T_{p} M\right)$. Then the function $k: M \ni p \rightarrow k(p) \in \mathbb{R}$ is constant provided that M is connected.

Proof. Take the exterior derivative of the definition $\kappa_{i}^{j}=d \omega_{i}^{j}+\sum_{s} \omega_{s}^{j} \wedge \omega_{i}^{s}$, it holds that

$$
\begin{aligned}
d \kappa_{i}^{j} & =d\left(d \omega_{i}^{j}\right)+\sum_{s} d \omega_{s}^{j} \wedge \omega_{i}^{s}-\sum_{s} s \omega_{s}^{j} \wedge d \omega_{i}^{s} \\
& =\sum_{s}\left(\kappa_{s}^{j}-\sum_{t} \omega_{t}^{j} \wedge \omega_{s}^{t}\right) \wedge \omega_{i}^{s}-\sum_{s} \omega_{s}^{j} \wedge\left(\kappa_{i}^{s}-\sum_{t} \omega_{t}^{s} \wedge \omega_{i}^{t}\right)
\end{aligned}
$$

and hence we have the identity

$$
\begin{equation*}
d \kappa_{i}^{j}=\sum_{s}\left(\kappa_{s}^{j} \wedge \omega_{i}^{s}-\omega_{s}^{j} \wedge \kappa_{i}^{s}\right), \tag{5.4}
\end{equation*}
$$

which is known as the second Bianchi identity. By our assumption, Theorem 5.1 implies that $\kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}$. Then by Lemma 2.17,

$$
\begin{aligned}
d \kappa_{i}^{j} & =d\left(k \omega^{i}\right) \wedge \omega^{j}-k \omega^{i} \wedge d \omega^{j}=d k \wedge \omega^{i} \wedge \omega^{j}+k d \omega^{i} \wedge \omega^{j}-k \omega^{i} \wedge d \omega^{j} \\
& =d k \wedge \omega^{i} \wedge \omega^{j}+\sum_{s} k \omega^{s} \wedge \omega_{s}^{i} \wedge \omega^{j}-\sum_{s} k \omega^{i} \wedge \omega^{s} \wedge \omega_{s}^{j}=d k \wedge \omega^{i} \wedge \omega^{j}+d \kappa_{i}^{j}
\end{aligned}
$$

holds for each i and j. Thus, $d k \wedge \omega^{i} \wedge \omega^{j}=0$ for all i and j, which implies $d k=0$. This equality is independent of choice of orthonormal frames. Since M is connected, k is constant.

5.2 Space forms

Let (M, g) be a Riemannian n-manifold. A path $\gamma:[0,+\infty) \rightarrow M$ is said to be a divergence path if for any compact subset $K \in M$, there exists $t_{0} \in(0,+\infty)$ such that $\gamma\left(\left[t_{0},+\infty\right)\right) \subset M \backslash K$. If any divergent path has infinite length, (M, g) is said to be complete. ${ }^{5}$ In particular, a compact Riemannian manifold (without boundary) is automatically complete.

[^0]Definition 5.3. An n-dimensional space form is a complete Riemannian n-manifold of constant sectional curvature.

Example 5.4. The Euclidean n-space is a space form of constant sectional curvature 0 . In fact, let $\left(x^{1}, \ldots, x^{n}\right)$ be the canonical Cartesian coordinate system and set $\boldsymbol{e}_{j}=\partial / \partial x^{j}$. Then $\left[\boldsymbol{e}_{j}\right]$ is an orthornormal frame defined on the entire \mathbb{R}^{n}, and Propositions 3.1 and 3.2 implies that the connection form $\omega_{j}^{i}=0$. Hence the curvature forms vanish, and then the sectional curvature is identically zero.

So it is sufficient to show completeness. Let $\gamma:[0,+\infty) \rightarrow \mathbb{R}^{n}$ be a divergent path. Then for each $r>0$, there exists $t_{0}>0$ such that $|\gamma(t)|>r$ holds on $\left[t_{0},+\infty\right)$, equivalently, $|\gamma(t)| \rightarrow+\infty$ as $t \rightarrow+\infty$. So the length L of the curve γ is

$$
L=\lim _{t \rightarrow+\infty} \int_{0}^{t}|\dot{\gamma}(\tau)| d \tau \geqq \lim _{t \rightarrow+\infty}\left|\int_{0}^{t} \dot{\gamma}(\tau) d \tau\right|=\lim _{t \rightarrow+\infty}|\gamma(t)-\gamma(0)| \geqq \lim _{t \rightarrow+\infty}|\gamma(t)|-|\gamma(0)|=+\infty
$$

Here, we used the triangle inequality of integrals for vector-valued functions ${ }^{6}$.

5.3 The Hyperbolic spaces

Let $H^{n}\left(-c^{2}\right)$ be the hyperbolic n-space defined in Example 1.8, where c is a non-zero constant:

$$
H^{n}\left(-c^{2}\right):=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=-\frac{1}{c^{2}}\right., c x_{0}>0\right\}
$$

where $\left(\mathbb{R}_{1}^{n+1},\langle,\rangle_{L}\right)$ be the Lorentz-Minkowski $(n+1)$-space as in Example 1.7. The tangent space $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ is the orthogonal complement \boldsymbol{x}^{\perp} of \boldsymbol{x}, and the restriction g_{H} of the inner product \langle,\rangle_{L} to $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ is positive definite. Thus, $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ is a Riemannian manifold, called the hyperbolic n-space.

Theorem 5.5. The hyperbolic space $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$ is of constant sectional curvature $-c^{2}$.
Proof. Notice that $H^{n}\left(-c^{2}\right)$ can be expressed as a graph $x^{0}=\frac{1}{c} \sqrt{1+c^{2}\left(\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}\right)}$ defined on the $\left(x^{1}, \ldots, x^{n}\right)$-hyperplane, it is covered by single chart. Then there exists a orthonormal frame field $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ defined on entire $H^{n}\left(-c^{2}\right)$. Denote by $\left(\omega^{i}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ the dual frame, the connection form and the curvature form with respect to $\left[\boldsymbol{e}_{j}\right]$, respectively.

Regarding $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)$ as a linear subspace in \mathbb{R}_{1}^{n+1}, we can consider \boldsymbol{e}_{j} as a vector-valued function. In addition the position vector $\boldsymbol{x} \in H^{n}\left(-c^{2}\right)$ can be also regarded as a vector-valued function. Since $T_{\boldsymbol{x}} H^{n}\left(-c^{2}\right)=\boldsymbol{x}^{\perp}$,

$$
\begin{equation*}
\mathcal{F}:=\left(\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right): H^{n}\left(-c^{2}\right) \rightarrow \mathrm{M}_{n+1}(\mathbb{R}) \quad \boldsymbol{e}_{0}=c \boldsymbol{x} \tag{5.5}
\end{equation*}
$$

gives a pseudo orthornormal frame along $H^{n}\left(-c^{2}\right)$, that is, ${ }^{t} \mathcal{F} Y \mathcal{F}=Y(Y:=\operatorname{diag}(-1,1, \ldots, 1))$ holds.

As seen in Exercise 4-2, it holds that

$$
\begin{equation*}
d \boldsymbol{e}_{0}=c d \boldsymbol{x}=c \sum_{j=1}^{n} \omega^{j} \boldsymbol{e}_{j} \tag{5.6}
\end{equation*}
$$

On the other hand, for each $j=1, \ldots, n$, decompose the vector-valued one form $d \boldsymbol{e}_{j}$ as

$$
d \boldsymbol{e}_{j}=h_{j} \boldsymbol{e}_{0}+\sum_{s} \alpha_{j}^{s} \boldsymbol{e}_{s}
$$

[^1]where h_{j} and α_{j}^{s} are one forms on $H^{n}\left(-c^{2}\right)$. Here,
$$
h_{j}=-\left\langle d \boldsymbol{e}_{j}, \boldsymbol{e}_{0}\right\rangle_{L}=-d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{0}\right\rangle_{L}+\left\langle\boldsymbol{e}_{j}, d \boldsymbol{e}_{0}\right\rangle_{L}=c \omega^{j}
$$
and
$$
\alpha_{j}^{s}=\left\langle d \boldsymbol{e}_{j}, \boldsymbol{e}_{s}\right\rangle_{L}=d\left\langle\boldsymbol{e}_{j}, \boldsymbol{e}_{s}\right\rangle_{L}-\left\langle\boldsymbol{e}_{j}, d \boldsymbol{e}_{s}\right\rangle_{L}=-\alpha_{s}^{j} .
$$

Differentiating (5.6), it holds that

$$
0=\frac{1}{c} d d \boldsymbol{e}_{0}=\sum_{j}\left(d \omega^{j} \boldsymbol{e}_{j}-\omega^{j} \wedge d \boldsymbol{e}_{j}\right)=\sum_{j, s} \omega^{s} \wedge \omega_{s}^{j} \boldsymbol{e}_{j}-\sum_{j, s} \omega^{j} \wedge \alpha_{j}^{s} \boldsymbol{e}_{s}=\sum_{j} \sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right) \boldsymbol{e}_{j}
$$

because $\omega^{j} \wedge \omega^{j}=0$. Thus, we have $\sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right)=0$, and then

$$
\begin{aligned}
& 0=\left(\sum_{s} \omega^{s} \wedge\left(\omega_{s}^{j}-\alpha_{s}^{j}\right)\right)\left(\boldsymbol{e}_{l}, \boldsymbol{e}_{m}\right)=\left(\omega_{l}^{j}\left(\boldsymbol{e}_{m}\right)-\alpha_{l}^{j}\left(\boldsymbol{e}_{m}\right)\right)-\left(\omega_{m}^{j}\left(\boldsymbol{e}_{l}\right)-\alpha_{m}^{j}\left(\boldsymbol{e}_{l}\right)\right), \\
& 0=\left(\omega_{j}^{m}\left(\boldsymbol{e}_{l}\right)-\alpha_{j}^{m}\left(\boldsymbol{e}_{l}\right)\right)-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right)=-\left(\omega_{m}^{j}\left(\boldsymbol{e}_{l}\right)-\alpha_{m}^{j}\left(\boldsymbol{e}_{l}\right)\right)-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right), \\
& 0=\left(\omega_{m}^{l}\left(\boldsymbol{e}_{j}\right)-\alpha_{m}^{l}\left(\boldsymbol{e}_{j}\right)\right)-\left(\omega_{j}^{l}\left(\boldsymbol{e}_{m}\right)-\alpha_{j}^{l}\left(\boldsymbol{e}_{m}\right)\right)=-\left(\omega_{l}^{m}\left(\boldsymbol{e}_{j}\right)-\alpha_{l}^{m}\left(\boldsymbol{e}_{j}\right)\right)+\left(\omega_{l}^{j}\left(\boldsymbol{e}_{m}\right)-\alpha_{l}^{j}\left(\boldsymbol{e}_{m}\right)\right),
\end{aligned}
$$

which conclude that $\omega_{l}^{j}=\alpha_{l}^{j}$. Summing up, we have

$$
\begin{equation*}
d \boldsymbol{e}_{j}=c \omega^{j} \boldsymbol{e}_{0}+\sum_{s} \omega_{j}^{s} \boldsymbol{e}_{s} \tag{5.7}
\end{equation*}
$$

Then the frame \mathcal{F} in (5.5) satisfies

$$
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \text { where } \quad \widetilde{\Omega}=\left(\begin{array}{cc}
0 & c^{t} \boldsymbol{\omega} \tag{5.8}\\
c \boldsymbol{\omega} & \Omega
\end{array}\right) \quad \text { and } \quad \boldsymbol{\omega}:={ }^{t}\left(\omega^{1}, \ldots, \omega^{n}\right)
$$

The integrability condition of (5.8) is

$$
O=d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=\left(\begin{array}{cc}
c^{2 t} \boldsymbol{\omega} \wedge \boldsymbol{\omega} & c\left(d^{t} \boldsymbol{\omega}+{ }^{t} \omega \wedge \Omega\right) \\
c(d \boldsymbol{\omega}+\Omega \wedge \boldsymbol{\omega}) & d \Omega+\Omega \wedge \Omega+c^{2} \boldsymbol{\omega} \wedge^{t} \boldsymbol{\omega}
\end{array}\right)
$$

The lower-right components of the identity above yields

$$
\kappa_{i}^{j}+c^{2} \omega^{i} \wedge \omega^{j}=0
$$

Hence the sectional curvature of $\left(H^{n}\left(-c^{2}\right), g_{H}\right)=-c^{2}$.
Remark 5.6. One can show the completeness of $\left(H^{n}\left(-c^{2}\right), g_{H}\right)$. Hence the hyperbolic space is a simply connected space form of negative sectional curvature.

Exercises

5-1 Prove that the sphere

$$
S^{n}\left(c^{2}\right)=\left\{\boldsymbol{x} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\frac{1}{c^{2}}\right\}
$$

of radius $1 / c$ in the Eucidean $n+1$-space is of constant sectional curvature c^{2}.
5-2 Let $f: U \rightarrow \mathbb{R}^{n+1}$ be an immersion defined on a domain $U \subset \mathbb{R}^{n}$, and ν a unit normal vector field. Take an orthornormal frame $\left[e_{1}, \ldots, e_{n}\right]$ of the tangent bundle of U, and consider each \boldsymbol{e}_{j} a map into \mathbb{R}^{n+1}. In addition, we consider ν an \mathbb{R}^{n+1}-valued function. Prove that

$$
d \nu=-\sum_{j} h^{j} \boldsymbol{e}_{j}, \quad \text { where } \quad h^{j}:=\left\langle d \boldsymbol{e}_{j}, \nu\right\rangle
$$

[^0]: ${ }^{5}$ Usually, completeness is defined in terms of geodesics: A Riemannian manifold (M, g) is complete if any geodesics are defined on entire \mathbb{R}. The definition here is one of the equivalent conditions of completeness, expressed in the Hopf-Rinow theorem.

[^1]: ${ }^{6}$ See, for example, Theorem A.1.4 in [UY17] for $n=2$. The idea of the proof works for general n.

