21 MTH.B502; Sect. 6

6 Local uniqueness of space forms

6.1 Isomelries

A C*-map f: M — N between manifolds M and N induces a linear map
(df)p: T,M > X — (df)p(X) = — fon(t) e TypN,

t=0

where v: (—e,e) — M is a smooth curve with v(0) = p and §(0) = X, called the differential of f.
Since p € M is arbitrary, this induces a bundle homomorphism df: TM — T'N.

Definition 6.1. A wvector field on N along a smooth map f: M — N is a map X: M — TN
satisfying m o X = f, where m: TN — N is the canonical projection.

Then for each vector field X € X(M), df(X) is a vector field on N along f.

Definition 6.2. A C*-map f: M — N between Riemannian manifolds (M, g) and (N, h) is called
a local isometry if dim M = dim N and f*h = g hold, that is,

STUX,Y) == h(df (X),df (Y)) = g(X,Y)
holds for X, Y € T,M and p € M.
Lemma 6.3. A local isometry is an immersion.

Proof. Let [e1,...,e,] be a (local) orthonormal frame of M, where n = dim M. Set v; := df (e;)
(j =1,...,n) for a smooth map f: (M, g) — (N,h). If f is a local isometry, [v1(p),...,v,(p)] is

an orthonormal system in T,y N, because

(p
h(vi,v;) = h(df (e:), df (e;)) = f"h(ei, e;) = g(ei, €;).
Hence the differential (df), is of rank n. O
The proof of Lemma 6.3 suggests the following fact:

Corollary 6.4. A smooth map f: (M,g) — (N,h) is a local isometry if and only if for each
peM,

[V1,...,v,] :=[df (e1),...,df (e,)]

is an orthonormal frame for some orthonormal frame [e;] on a neighborhood of p.

6.2 Local uniqueness of space forms

Theorem 6.5. Let U C R™ be a simply connected domain and g a Riemannian metric on U. If
the sectional curvature of (U, g) is constant k, there exists a local isometry f: U — N™(k), where

S™(k) (k>0)
N"(k) = R" (k=0)
H"(k) (k <0).
Proof. Take an orthonormal frame [ey, ..., e,] on U, and let (w/), 2 = (w!) and K = (x!) be the

dual frame, the connection form, and the curvature form with respect to [e;], respectively. Since
the sectional curvature is constant k, ] = kw® A w’ holds for each (i, j), because of Theorem 5.1.
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First, consider the case k = 0: In this case, K = df2 4+ 2 A 2 = O, and then by Theorem 3.5,
there exists the unique matrix valued function F: U — SO(n) satisfying

dF = F12, F(po) = id,

where pg € U is a fixed point. Decompose the matrix F into column vectors as F = [vq, ..., V],

and define an R™-valued one form

_E Jo
o= w'v;.

j=1
Then

n

da = Z(dwjvj —w /\dvj) = Z(ws/\wg)vj —Z(wj /\wj>’Us =0.

=1 J»s 38

Hence by the Poincaré lemma (Theorem 3.8), there exists a smooth map f: U — R"™ satisfying
df = a. For such an f, it holds that

n

df (es) = ales) = ij(es)vj = vy

Jj=1

for s =1,...,n. Hence [df(e1),...,df(en)] = [v1,...,v,] is an orthonormal frame, and then f is
a local isometry because Corollary 6.4.
Next, consider the case k = —c? < 0. We set

~ 0 cduw
Q2= (cw 0 > , where w =

as in (5.8) in Section 57. Since /if = k' Awl = —wi Aw?, d2 4+ 2 A 2 = O holds as seen in
Section 5. Hence there exists an matrix valued function F: U — M,,11(R) satisfying

(6.1) dF =FQ,  Flpo) =id,

where pg € U is a fixed point. Notice that

-1 0 0
t~ - 0 1 0
NY +YN=0 Y = )

0 0 1

holds,
d(FY'F) = FQY'F + FY' @'F = F(QY +Y' Q)'F = 0.
Hence, by the initial condition,
FY'F=Y, thatis, (FY) !="'FY.
Thus, we have

(6.2) 'FYF=(FY) '"F=YF 'F=Y.

"The original version of (5.8) is wrong. See the revised version on July 26.
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Decompose F = [vg, v1,...,0,]. Then (6.2) is equivalent to
(6.3) — (v0,v0), = (V1,v1), = = (Un,Vp) =1, (vi,v5) =0 (if 7 # j).
In particular, the O-th component of vy never vanishes, since
—1=(vo,v0), = —(v9)” + (vg)* + -+ (v5)* w0 ="(vg, g, .-, Vp)-
Moreover, by the initial condition vg(pg) = 75(1, 0,...,0),
(6.4) v) >0
holds.
Set f := lvg. Then f: U — R} *! is the desired map. In fact, by (6.3) and (6.4),

feH"(—c?) = {m = t(xo,...,x") e R | (x,x) = 1 cx® > 0}

c?’
and
df (e;) = d'vo (ej) Zw e;)vs = ;.
Hence [v;] = [e;] is an orthonormal frame because (6.3).
The case k > 0 is left as an exercise. O

6.3 The fundamental theorem for surfaces revisited

From now on, we restrict our attention to surfaces in 3-dimensional space form. Before stating the
fundamental theorem for surfaces in space forms, we review the fundamental theorem of surface
theory in the Euclidean 3-space.

Let f: U — R3 be an immersion of a domain U C R? into the Euclidean 3-space. The first
fundamental form ds® is the pull-back of the Euclidean metric by f, that is,

ds*(X,Y) = (df (X),df (Y))

for all tangent vectors X, Y in T,U. Since f is an immersion, ds? gives an Riemannian metric on
U. Take an orthonormal frame [e1, es] on U with respect to ds? and denote by (w!,w?) the dual
[e1, e2]. Since the connection form 2 = (w]) is skew-symmetric, we can write

_ (0 &
Q_(u 0)’
1

where p1 = w; is a 1-form on U, and the curvature form is

o o 0 d/}; o 0 k 1 2
K_dQ+Q/\Q_<du 0)_(k 0)0.) Aw

where k is the sectional curvature of ds?.
Set
v; =df(e;) (j=1,2) and v3 = V1 X Vg,

where “x” denotes the vector product of R3. Then [v,v2,v3] is orthonormal in R3. In particular
we have the orthogonal matrix valued function

F:U3p = Fp) = [vi(p),v2(p), v3(p)] € SO(3),

which is called the adapted frame of f with respect to [e;]. We call v the unit normal vector field
of f. Define two differential forms h’ by

(6.5) b = — (dvs,v;) (j=1,2).

The pair (h7);=1 2 is called the second fundamental form.
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Lemma 6.6.

dvy = —pvg + hlvs,
d’Ug = Uvq + }7,2’037

d’Ug = —hl’vl — hz’l)g,
in other words,
- ~ 0 —n
dF = F12, R=|p 0
h'  h?

Ezxercises

6-1 Prove Theorem 6.5 for £ > 0.

6-2 Prove Lemma 6.6.
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0



