6 Local uniqueness of space forms

6.1 Isometries

A C^{∞} -map $f: M \to N$ between manifolds M and N induces a linear map

$$(df)_p \colon T_p M \ni X \longmapsto (df)_p(X) = \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma(t) \in T_{f(p)} N,$$

where $\gamma: (-\varepsilon, \varepsilon) \to M$ is a smooth curve with $\gamma(0) = p$ and $\dot{\gamma}(0) = X$, called the *differential* of f. Since $p \in M$ is arbitrary, this induces a bundle homomorphism $df: TM \to TN$.

Definition 6.1. A vector field on N along a smooth map $f: M \to N$ is a map $X: M \to TN$ satisfying $\pi \circ X = f$, where $\pi: TN \to N$ is the canonical projection.

Then for each vector field $X \in \mathfrak{X}(M)$, df(X) is a vector field on N along f.

Definition 6.2. A C^{∞} -map $f: M \to N$ between Riemannian manifolds (M, g) and (N, h) is called a *local isometry* if dim $M = \dim N$ and $f^*h = g$ hold, that is,

$$f^*h(X,Y) := h(df(X), df(Y)) = g(X,Y)$$

holds for $X, Y \in T_p M$ and $p \in M$.

Lemma 6.3. A local isometry is an immersion.

Proof. Let $[e_1, \ldots, e_n]$ be a (local) orthonormal frame of M, where $n = \dim M$. Set $\mathbf{v}_j := df(\mathbf{e}_j)$ $(j = 1, \ldots, n)$ for a smooth map $f: (M, g) \to (N, h)$. If f is a local isometry, $[\mathbf{v}_1(p), \ldots, \mathbf{v}_n(p)]$ is an orthonormal system in $T_{f(p)}N$, because

$$h(\boldsymbol{v}_i, \boldsymbol{v}_j) = h(df(\boldsymbol{e}_i), df(\boldsymbol{e}_j)) = f^*h(\boldsymbol{e}_i, \boldsymbol{e}_j) = g(\boldsymbol{e}_i, \boldsymbol{e}_j).$$

Hence the differential $(df)_p$ is of rank n.

The proof of Lemma 6.3 suggests the following fact:

Corollary 6.4. A smooth map $f: (M,g) \to (N,h)$ is a local isometry if and only if for each $p \in M$,

 $[\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n]:=[df(\boldsymbol{e}_1),\ldots,df(\boldsymbol{e}_n)]$

is an orthonormal frame for some orthonormal frame $[e_j]$ on a neighborhood of p.

6.2 Local uniqueness of space forms

Theorem 6.5. Let $U \subset \mathbb{R}^n$ be a simply connected domain and g a Riemannian metric on U. If the sectional curvature of (U,g) is constant k, there exists a local isometry $f: U \to N^n(k)$, where

$$N^{n}(k) = \begin{cases} S^{n}(k) & (k > 0) \\ \mathbb{R}^{n} & (k = 0) \\ H^{n}(k) & (k < 0). \end{cases}$$

Proof. Take an orthonormal frame $[e_1, \ldots, e_n]$ on U, and let (ω^j) , $\Omega = (\omega_i^j)$ and $K = (\kappa_i^j)$ be the dual frame, the connection form, and the curvature form with respect to $[e_j]$, respectively. Since the sectional curvature is constant k, $\kappa_i^j = k\omega^i \wedge \omega^j$ holds for each (i, j), because of Theorem 5.1.

^{26.} July, 2022.

First, consider the case k = 0: In this case, $K = d\Omega + \Omega \wedge \Omega = O$, and then by Theorem 3.5, there exists the unique matrix valued function $\mathcal{F}: U \to SO(n)$ satisfying

$$d\mathcal{F} = \mathcal{F}\Omega, \qquad \mathcal{F}(p_0) = \mathrm{id},$$

where $p_0 \in U$ is a fixed point. Decompose the matrix \mathcal{F} into column vectors as $\mathcal{F} = [v_1, \ldots, v_n]$, and define an \mathbb{R}^n -valued one form

$$\boldsymbol{\alpha} := \sum_{j=1}^n \omega^j \boldsymbol{v}_j.$$

Then

$$doldsymbol{lpha} = \sum_{j=1}^n \left(d\omega^j oldsymbol{v}_j - \omega^j \wedge doldsymbol{v}_j
ight) = \sum_{j,s} \left(\omega^s \wedge \omega_s^j
ight) oldsymbol{v}_j - \sum_{j,s} \left(\omega^j \wedge \omega_j^s
ight) oldsymbol{v}_s = oldsymbol{0}.$$

Hence by the Poincaré lemma (Theorem 3.8), there exists a smooth map $f: U \to \mathbb{R}^n$ satisfying $df = \alpha$. For such an f, it holds that

$$df(\boldsymbol{e}_s) = \alpha(\boldsymbol{e}_s) = \sum_{j=1}^n \omega^j(\boldsymbol{e}_s) \boldsymbol{v}_j = \boldsymbol{v}_s$$

for s = 1, ..., n. Hence $[df(e_1), ..., df(e_n)] = [v_1, ..., v_n]$ is an orthonormal frame, and then f is a local isometry because Corollary 6.4.

Next, consider the case $k = -c^2 < 0$. We set

$$\widetilde{\Omega} := \begin{pmatrix} 0 & c^t \boldsymbol{\omega} \\ c \boldsymbol{\omega} & \Omega \end{pmatrix}, \quad \text{where} \quad \boldsymbol{\omega} = \begin{pmatrix} \omega^1 \\ \vdots \\ \omega^n \end{pmatrix}$$

as in (5.8) in Section 5⁷. Since $\kappa_i^j = k\omega^i \wedge \omega^j = -c^2\omega^i \wedge \omega^j$, $d\widetilde{\Omega} + \widetilde{\Omega} \wedge \widetilde{\Omega} = O$ holds as seen in Section 5. Hence there exists an matrix valued function $\mathcal{F} \colon U \to \mathcal{M}_{n+1}(\mathbb{R})$ satisfying

(6.1)
$$d\mathcal{F} = \mathcal{F}\widetilde{\Omega}, \qquad \mathcal{F}(p_0) = \mathrm{id},$$

where $p_0 \in U$ is a fixed point. Notice that

$${}^{t}\widetilde{\Omega}Y + Y\widetilde{\Omega} = O \qquad Y = \begin{pmatrix} -1 & 0 & \dots & 0\\ 0 & 1 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 1 \end{pmatrix}$$

holds,

$$d(\mathcal{F}Y^t\mathcal{F}) = \mathcal{F}\widetilde{\Omega}Y^t\mathcal{F} + \mathcal{F}Y^t\widetilde{\Omega}^t\mathcal{F} = \mathcal{F}(\widetilde{\Omega}Y + Y^t\widetilde{\Omega})^t\mathcal{F} = O.$$

Hence, by the initial condition,

$$\mathcal{F}Y^t\mathcal{F} = Y$$
, that is, $(\mathcal{F}Y)^{-1} = {}^t\mathcal{F}Y$.

Thus, we have

(6.2)
$${}^{t}\mathcal{F}Y\mathcal{F} = (\mathcal{F}Y)^{-1}\mathcal{F} = Y\mathcal{F}^{-1}\mathcal{F} = Y.$$

⁷The original version of (5.8) is wrong. See the revised version on July 26.

Decompose $\mathcal{F} = [\boldsymbol{v}_0, \boldsymbol{v}_1, \dots, \boldsymbol{v}_n]$. Then (6.2) is equivalent to

(6.3)
$$-\langle \boldsymbol{v}_0, \boldsymbol{v}_0 \rangle_L = \langle \boldsymbol{v}_1, \boldsymbol{v}_1 \rangle_L = \dots = \langle \boldsymbol{v}_n, \boldsymbol{v}_n \rangle_L = 1, \qquad \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = 0 \quad (\text{if } i \neq j)$$

In particular, the 0-th component of \boldsymbol{v}_0 never vanishes, since

$$-1 = \langle \boldsymbol{v}_0, \boldsymbol{v}_0 \rangle_L = -(v_0^0)^2 + (v_0^1)^2 + \dots + (v_0^n)^2 \qquad \boldsymbol{v}_0 = {}^t (v_0^0, v_0^1, \dots, v_0^n)$$

Moreover, by the initial condition $\boldsymbol{v}_0(p_0) = {}^t(1, 0, \dots, 0),$

(6.4)
$$v_0^0 > 0$$

holds.

Set $f := \frac{1}{c} \boldsymbol{v}_0$. Then $f: U \to \mathbb{R}^{n+1}_1$ is the desired map. In fact, by (6.3) and (6.4),

$$f \in H^n(-c^2) = \left\{ \boldsymbol{x} = {}^t(x^0, \dots, x^n) \in \mathbb{R}^{n+1}_1 \middle| \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -\frac{1}{c^2}, cx^0 > 0 \right\},$$

and

$$df(\boldsymbol{e}_j) = \frac{1}{c} d\boldsymbol{v}_0(\boldsymbol{e}_j) = \sum_{s=1}^n \omega^s(\boldsymbol{e}_j) \boldsymbol{v}_s = \boldsymbol{v}_j.$$

Hence $[\boldsymbol{v}_i] = [\boldsymbol{e}_i]$ is an orthonormal frame because (6.3).

The case k > 0 is left as an exercise.

6.3 The fundamental theorem for surfaces revisited

From now on, we restrict our attention to surfaces in 3-dimensional space form. Before stating the fundamental theorem for surfaces in space forms, we review the fundamental theorem of surface theory in the Euclidean 3-space.

Let $f: U \to \mathbb{R}^3$ be an immersion of a domain $U \subset \mathbb{R}^2$ into the Euclidean 3-space. The first fundamental form ds^2 is the pull-back of the Euclidean metric by f, that is,

$$ds^{2}(X,Y) = \langle df(X), df(Y) \rangle$$

for all tangent vectors X, Y in T_pU . Since f is an immersion, ds^2 gives an Riemannian metric on U. Take an orthonormal frame $[e_1, e_2]$ on U with respect to ds^2 and denote by (ω^1, ω^2) the dual $[e_1, e_2]$. Since the connection form $\Omega = (\omega_i^j)$ is skew-symmetric, we can write

$$\Omega = \begin{pmatrix} 0 & \mu \\ -\mu & 0 \end{pmatrix},$$

where $\mu = \omega_2^1$ is a 1-form on U, and the curvature form is

$$K = d\Omega + \Omega \wedge \Omega = \begin{pmatrix} 0 & d\mu \\ -d\mu & 0 \end{pmatrix} = \begin{pmatrix} 0 & k \\ -k & 0 \end{pmatrix} \omega^1 \wedge \omega^2$$

where k is the sectional curvature of ds^2 .

Set

 $\boldsymbol{v}_j := df(\boldsymbol{e}_j) \quad (j = 1, 2) \qquad ext{and} \qquad \boldsymbol{v}_3 = \boldsymbol{v}_1 \times \boldsymbol{v}_2,$

where "×" denotes the vector product of \mathbb{R}^3 . Then $[v_1, v_2, v_3]$ is orthonormal in \mathbb{R}^3 . In particular we have the orthogonal matrix valued function

$$\mathcal{F}: U \ni p \mapsto \mathcal{F}(p) = [\boldsymbol{v}_1(p), \boldsymbol{v}_2(p), \boldsymbol{v}_3(p)] \in \mathrm{SO}(3),$$

which is called the *adapted frame* of f with respect to $[e_j]$. We call v_3 the *unit normal vector field* of f. Define two differential forms h^j by

(6.5)
$$h^j := -\langle d\boldsymbol{v}_3, \boldsymbol{v}_j \rangle \qquad (j = 1, 2).$$

The pair $(h^j)_{j=1,2}$ is called the second fundamental form.

Lemma 6.6.

$$egin{aligned} dm{v}_1 &= -\mum{v}_2 + h^1m{v}_3, \ dm{v}_2 &= \mum{v}_1 + h^2m{v}_3, \ dm{v}_3 &= -h^1m{v}_1 - h^2m{v}_2, \end{aligned}$$

in other words,

$$d\mathcal{F} = \mathcal{F}\widetilde{\Omega}, \qquad \widetilde{\Omega} = \begin{pmatrix} 0 & -\mu & -h^1 \\ \mu & 0 & -h^2 \\ h^1 & h^2 & 0 \end{pmatrix}.$$

Exercises

6-1 Prove Theorem 6.5 for k > 0.

6-2 Prove Lemma 6.6.