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6 Local uniqueness of space forms

6.1 Isometries

A C∞-map f : M → N between manifolds M and N induces a linear map

(df)p : TpM 3 X 7−→ (df)p(X) =
d

dt

∣∣∣∣
t=0

f ◦ γ(t) ∈ Tf(p)N,

where γ : (−ε, ε) → M is a smooth curve with γ(0) = p and γ̇(0) = X, called the differential of f .
Since p ∈ M is arbitrary, this induces a bundle homomorphism df : TM → TN .

Definition 6.1. A vector field on N along a smooth map f : M → N is a map X : M → TN
satisfying π ◦X = f , where π : TN → N is the canonical projection.

Then for each vector field X ∈ X(M), df(X) is a vector field on N along f .

Definition 6.2. A C∞-map f : M → N between Riemannian manifolds (M, g) and (N,h) is called
a local isometry if dimM = dimN and f∗h = g hold, that is,

f∗h(X,Y ) := h(df(X), df(Y )) = g(X,Y )

holds for X, Y ∈ TpM and p ∈ M .

Lemma 6.3. A local isometry is an immersion.

Proof. Let [e1, . . . , en] be a (local) orthonormal frame of M , where n = dimM . Set vj := df(ej)
(j = 1, . . . , n) for a smooth map f : (M, g) → (N,h). If f is a local isometry, [v1(p), . . . ,vn(p)] is
an orthonormal system in Tf(p)N , because

h(vi,vj) = h(df(ei), df(ej)) = f∗h(ei, ej) = g(ei, ej).

Hence the differential (df)p is of rank n.

The proof of Lemma 6.3 suggests the following fact:

Corollary 6.4. A smooth map f : (M, g) → (N,h) is a local isometry if and only if for each
p ∈ M ,

[v1, . . . ,vn] := [df(e1), . . . , df(en)]

is an orthonormal frame for some orthonormal frame [ej ] on a neighborhood of p.

6.2 Local uniqueness of space forms

Theorem 6.5. Let U ⊂ Rn be a simply connected domain and g a Riemannian metric on U . If
the sectional curvature of (U, g) is constant k, there exists a local isometry f : U → Nn(k), where

Nn(k) =


Sn(k) (k > 0)

Rn (k = 0)

Hn(k) (k < 0).

Proof. Take an orthonormal frame [e1, . . . , en] on U , and let (ωj), Ω = (ωj
i ) and K = (κj

i ) be the
dual frame, the connection form, and the curvature form with respect to [ej ], respectively. Since
the sectional curvature is constant k, κj

i = kωi ∧ ωj holds for each (i, j), because of Theorem 5.1.
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First, consider the case k = 0: In this case, K = dΩ +Ω ∧Ω = O, and then by Theorem 3.5,
there exists the unique matrix valued function F : U → SO(n) satisfying

dF = FΩ, F(p0) = id,

where p0 ∈ U is a fixed point. Decompose the matrix F into column vectors as F = [v1, . . . ,vn],
and define an Rn-valued one form

α :=

n∑
j=1

ωjvj .

Then

dα =

n∑
j=1

(
dωjvj − ωj ∧ dvj

)
=
∑
j,s

(
ωs ∧ ωj

s

)
vj −

∑
j,s

(
ωj ∧ ωs

j

)
vs = 0.

Hence by the Poincaré lemma (Theorem 3.8), there exists a smooth map f : U → Rn satisfying
df = α. For such an f , it holds that

df(es) = α(es) =

n∑
j=1

ωj(es)vj = vs

for s = 1, . . . , n. Hence [df(e1), . . . , df(en)] = [v1, . . . ,vn] is an orthonormal frame, and then f is
a local isometry because Corollary 6.4.

Next, consider the case k = −c2 < 0. We set

Ω̃ :=

(
0 ctω
cω Ω

)
, where ω =

ω1

...
ωn


as in (5.8) in Section 57. Since κj

i = kωi ∧ ωj = −c2ωi ∧ ωj , dΩ̃ + Ω̃ ∧ Ω̃ = O holds as seen in
Section 5. Hence there exists an matrix valued function F : U → Mn+1(R) satisfying

(6.1) dF = FΩ̃, F(p0) = id,

where p0 ∈ U is a fixed point. Notice that

t
Ω̃Y + Y Ω̃ = O Y =


−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


holds,

d(FY tF) = FΩ̃Y tF + FY
t
Ω̃tF = F(Ω̃Y + Y

t
Ω̃)tF = O.

Hence, by the initial condition,

FY tF = Y, that is, (FY )−1 = tFY.

Thus, we have

(6.2) tFY F = (FY )−1F = Y F−1F = Y.

7The original version of (5.8) is wrong. See the revised version on July 26.
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Decompose F = [v0,v1, . . . ,vn]. Then (6.2) is equivalent to

(6.3) −〈v0,v0〉L = 〈v1,v1〉L = · · · = 〈vn,vn〉L = 1, 〈vi,vj〉 = 0 (if i 6= j).

In particular, the 0-th component of v0 never vanishes, since

−1 = 〈v0,v0〉L = −(v00)
2 + (v10)

2 + · · ·+ (vn0 )
2 v0 =

t
(v00 , v

1
0 , . . . , v

n
0 ).

Moreover, by the initial condition v0(p0) =
t
(1, 0, . . . , 0),

(6.4) v00 > 0

holds.
Set f := 1

cv0. Then f : U → Rn+1
1 is the desired map. In fact, by (6.3) and (6.4),

f ∈ Hn(−c2) =

{
x =

t
(x0, . . . , xn) ∈ Rn+1

1

∣∣∣∣ 〈x,x〉 = − 1

c2
, cx0 > 0

}
,

and

df(ej) =
1

c
dv0(ej) =

n∑
s=1

ωs(ej)vs = vj .

Hence [vj ] = [ej ] is an orthonormal frame because (6.3).
The case k > 0 is left as an exercise.

6.3 The fundamental theorem for surfaces revisited

From now on, we restrict our attention to surfaces in 3-dimensional space form. Before stating the
fundamental theorem for surfaces in space forms, we review the fundamental theorem of surface
theory in the Euclidean 3-space.

Let f : U → R3 be an immersion of a domain U ⊂ R2 into the Euclidean 3-space. The first
fundamental form ds2 is the pull-back of the Euclidean metric by f , that is,

ds2(X,Y ) = 〈df(X), df(Y )〉

for all tangent vectors X, Y in TpU . Since f is an immersion, ds2 gives an Riemannian metric on
U . Take an orthonormal frame [e1, e2] on U with respect to ds2 and denote by (ω1, ω2) the dual
[e1, e2]. Since the connection form Ω = (ωj

i ) is skew-symmetric, we can write

Ω =

(
0 µ
−µ 0

)
,

where µ = ω1
2 is a 1-form on U , and the curvature form is

K = dΩ +Ω ∧Ω =

(
0 dµ

−dµ 0

)
=

(
0 k
−k 0

)
ω1 ∧ ω2

where k is the sectional curvature of ds2.
Set

vj := df(ej) (j = 1, 2) and v3 = v1 × v2,

where “×” denotes the vector product of R3. Then [v1,v2,v3] is orthonormal in R3. In particular
we have the orthogonal matrix valued function

F : U 3 p 7→ F(p) = [v1(p),v2(p),v3(p)] ∈ SO(3),

which is called the adapted frame of f with respect to [ej ]. We call v3 the unit normal vector field
of f . Define two differential forms hj by

(6.5) hj := −〈dv3,vj〉 (j = 1, 2).

The pair (hj)j=1,2 is called the second fundamental form.
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Lemma 6.6.

dv1 = −µv2 + h1v3,

dv2 = µv1 + h2v3,

dv3 = −h1v1 − h2v2,

in other words,

dF = FΩ̃, Ω̃ =

 0 −µ −h1

µ 0 −h2

h1 h2 0

 .

Exercises

6-1 Prove Theorem 6.5 for k > 0.

6-2 Prove Lemma 6.6.


