6 Local uniqueness of space forms

6.1 Isometries

A C^{∞}-map $f: M \rightarrow N$ between manifolds M and N induces a linear map

$$
(d f)_{p}: T_{p} M \ni X \longmapsto(d f)_{p}(X)=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma(t) \in T_{f(p)} N
$$

where $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ is a smooth curve with $\gamma(0)=p$ and $\dot{\gamma}(0)=X$, called the differential of f. Since $p \in M$ is arbitrary, this induces a bundle homomorphism $d f: T M \rightarrow T N$.

Definition 6.1. A vector field on N along a smooth map $f: M \rightarrow N$ is a map $X: M \rightarrow T N$ satisfying $\pi \circ X=f$, where $\pi: T N \rightarrow N$ is the canonical projection.

Then for each vector field $X \in \mathfrak{X}(M), d f(X)$ is a vector field on N along f.
Definition 6.2. A C^{∞}-map $f: M \rightarrow N$ between Riemannian manifolds (M, g) and (N, h) is called a local isometry if $\operatorname{dim} M=\operatorname{dim} N$ and $f^{*} h=g$ hold, that is,

$$
f^{*} h(X, Y):=h(d f(X), d f(Y))=g(X, Y)
$$

holds for $X, Y \in T_{p} M$ and $p \in M$.
Lemma 6.3. A local isometry is an immersion.
Proof. Let $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ be a (local) orthonormal frame of M, where $n=\operatorname{dim} M$. Set $\boldsymbol{v}_{j}:=d f\left(\boldsymbol{e}_{j}\right)$ $(j=1, \ldots, n)$ for a smooth map $f:(M, g) \rightarrow(N, h)$. If f is a local isometry, $\left[\boldsymbol{v}_{1}(p), \ldots, \boldsymbol{v}_{n}(p)\right]$ is an orthonormal system in $T_{f(p)} N$, because

$$
h\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=h\left(d f\left(\boldsymbol{e}_{i}\right), d f\left(\boldsymbol{e}_{j}\right)\right)=f^{*} h\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) .
$$

Hence the differential $(d f)_{p}$ is of rank n.
The proof of Lemma 6.3 suggests the following fact:
Corollary 6.4. A smooth map $f:(M, g) \rightarrow(N, h)$ is a local isometry if and only if for each $p \in M$,

$$
\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]:=\left[d f\left(\boldsymbol{e}_{1}\right), \ldots, d f\left(\boldsymbol{e}_{n}\right)\right]
$$

is an orthonormal frame for some orthonormal frame $\left[\boldsymbol{e}_{j}\right]$ on a neighborhood of p.

6.2 Local uniqueness of space forms

Theorem 6.5. Let $U \subset \mathbb{R}^{n}$ be a simply connected domain and g a Riemannian metric on U. If the sectional curvature of (U, g) is constant k, there exists a local isometry $f: U \rightarrow N^{n}(k)$, where

$$
N^{n}(k)= \begin{cases}S^{n}(k) & (k>0) \\ \mathbb{R}^{n} & (k=0) \\ H^{n}(k) & (k<0)\end{cases}
$$

Proof. Take an orthonormal frame $\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$ on U, and let $\left(\omega^{j}\right), \Omega=\left(\omega_{i}^{j}\right)$ and $K=\left(\kappa_{i}^{j}\right)$ be the dual frame, the connection form, and the curvature form with respect to [\boldsymbol{e}_{j}], respectively. Since the sectional curvature is constant $k, \kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}$ holds for each (i, j), because of Theorem 5.1.

First, consider the case $k=0$: In this case, $K=d \Omega+\Omega \wedge \Omega=O$, and then by Theorem 3.5, there exists the unique matrix valued function $\mathcal{F}: U \rightarrow \mathrm{SO}(n)$ satisfying

$$
d \mathcal{F}=\mathcal{F} \Omega, \quad \mathcal{F}\left(p_{0}\right)=\mathrm{id}
$$

where $p_{0} \in U$ is a fixed point. Decompose the matrix \mathcal{F} into column vectors as $\mathcal{F}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$, and define an \mathbb{R}^{n}-valued one form

$$
\boldsymbol{\alpha}:=\sum_{j=1}^{n} \omega^{j} \boldsymbol{v}_{j}
$$

Then

$$
d \boldsymbol{\alpha}=\sum_{j=1}^{n}\left(d \omega^{j} \boldsymbol{v}_{j}-\omega^{j} \wedge d \boldsymbol{v}_{j}\right)=\sum_{j, s}\left(\omega^{s} \wedge \omega_{s}^{j}\right) \boldsymbol{v}_{j}-\sum_{j, s}\left(\omega^{j} \wedge \omega_{j}^{s}\right) \boldsymbol{v}_{s}=\mathbf{0}
$$

Hence by the Poincaré lemma (Theorem 3.8), there exists a smooth map $f: U \rightarrow \mathbb{R}^{n}$ satisfying $d f=\boldsymbol{\alpha}$. For such an f, it holds that

$$
d f\left(\boldsymbol{e}_{s}\right)=\alpha\left(\boldsymbol{e}_{s}\right)=\sum_{j=1}^{n} \omega^{j}\left(\boldsymbol{e}_{s}\right) \boldsymbol{v}_{j}=\boldsymbol{v}_{s}
$$

for $s=1, \ldots, n$. Hence $\left[d f\left(\boldsymbol{e}_{1}\right), \ldots, d f\left(\boldsymbol{e}_{n}\right)\right]=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$ is an orthonormal frame, and then f is a local isometry because Corollary 6.4.

Next, consider the case $k=-c^{2}<0$. We set

$$
\widetilde{\Omega}:=\left(\begin{array}{cc}
0 & c^{t} \boldsymbol{\omega} \\
c \boldsymbol{\omega} & \Omega
\end{array}\right), \quad \text { where } \quad \boldsymbol{\omega}=\left(\begin{array}{c}
\omega^{1} \\
\vdots \\
\omega^{n}
\end{array}\right)
$$

as in (5.8) in Section 5^{7}. Since $\kappa_{i}^{j}=k \omega^{i} \wedge \omega^{j}=-c^{2} \omega^{i} \wedge \omega^{j}, d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=O$ holds as seen in Section 5 . Hence there exists an matrix valued function $\mathcal{F}: U \rightarrow \mathrm{M}_{n+1}(\mathbb{R})$ satisfying

$$
\begin{equation*}
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \mathcal{F}\left(p_{0}\right)=\mathrm{id} \tag{6.1}
\end{equation*}
$$

where $p_{0} \in U$ is a fixed point. Notice that

$$
t \widetilde{\Omega} Y+Y \widetilde{\Omega}=O \quad Y=\left(\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

holds,

$$
d\left(\mathcal{F} Y^{t} \mathcal{F}\right)=\mathcal{F} \widetilde{\Omega} Y^{t} \mathcal{F}+\mathcal{F} Y^{t} \widetilde{\Omega}^{t} \mathcal{F}=\mathcal{F}\left(\widetilde{\Omega} Y+Y^{t} \widetilde{\Omega}\right)^{t} \mathcal{F}=O
$$

Hence, by the initial condition,

$$
\mathcal{F} Y^{t} \mathcal{F}=Y, \quad \text { that is, } \quad(\mathcal{F} Y)^{-1}={ }^{t} \mathcal{F} Y
$$

Thus, we have

$$
\begin{equation*}
{ }^{t} \mathcal{F} Y \mathcal{F}=(\mathcal{F} Y)^{-1} \mathcal{F}=Y \mathcal{F}^{-1} \mathcal{F}=Y \tag{6.2}
\end{equation*}
$$

[^0]Decompose $\mathcal{F}=\left[\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right]$. Then (6.2) is equivalent to

$$
\begin{equation*}
-\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right\rangle_{L}=\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right\rangle_{L}=\cdots=\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{n}\right\rangle_{L}=1, \quad\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right\rangle=0 \quad(\text { if } i \neq j) \tag{6.3}
\end{equation*}
$$

In particular, the 0 -th component of \boldsymbol{v}_{0} never vanishes, since

$$
-1=\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{0}\right\rangle_{L}=-\left(v_{0}^{0}\right)^{2}+\left(v_{0}^{1}\right)^{2}+\cdots+\left(v_{0}^{n}\right)^{2} \quad \boldsymbol{v}_{0}={ }^{t}\left(v_{0}^{0}, v_{0}^{1}, \ldots, v_{0}^{n}\right)
$$

Moreover, by the initial condition $\boldsymbol{v}_{0}\left(p_{0}\right)={ }^{t}(1,0, \ldots, 0)$,

$$
\begin{equation*}
v_{0}^{0}>0 \tag{6.4}
\end{equation*}
$$

holds.
Set $f:=\frac{1}{c} \boldsymbol{v}_{0}$. Then $f: U \rightarrow \mathbb{R}_{1}^{n+1}$ is the desired map. In fact, by (6.3) and (6.4),

$$
f \in H^{n}\left(-c^{2}\right)=\left\{\boldsymbol{x}={ }^{t}\left(x^{0}, \ldots, x^{n}\right) \in \mathbb{R}_{1}^{n+1} \left\lvert\,\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\frac{1}{c^{2}}\right., c x^{0}>0\right\}
$$

and

$$
d f\left(\boldsymbol{e}_{j}\right)=\frac{1}{c} d \boldsymbol{v}_{0}\left(\boldsymbol{e}_{j}\right)=\sum_{s=1}^{n} \omega^{s}\left(\boldsymbol{e}_{j}\right) \boldsymbol{v}_{s}=\boldsymbol{v}_{j}
$$

Hence $\left[\boldsymbol{v}_{j}\right]=\left[\boldsymbol{e}_{j}\right]$ is an orthonormal frame because (6.3).
The case $k>0$ is left as an exercise.

6.3 The fundamental theorem for surfaces revisited

From now on, we restrict our attention to surfaces in 3-dimensional space form. Before stating the fundamental theorem for surfaces in space forms, we review the fundamental theorem of surface theory in the Euclidean 3-space.

Let $f: U \rightarrow \mathbb{R}^{3}$ be an immersion of a domain $U \subset \mathbb{R}^{2}$ into the Euclidean 3 -space. The first fundamental form $d s^{2}$ is the pull-back of the Euclidean metric by f, that is,

$$
d s^{2}(X, Y)=\langle d f(X), d f(Y)\rangle
$$

for all tangent vectors X, Y in $T_{p} U$. Since f is an immersion, $d s^{2}$ gives an Riemannian metric on U. Take an orthonormal frame $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ on U with respect to $d s^{2}$ and denote by $\left(\omega^{1}, \omega^{2}\right)$ the dual $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$. Since the connection form $\Omega=\left(\omega_{i}^{j}\right)$ is skew-symmetric, we can write

$$
\Omega=\left(\begin{array}{cc}
0 & \mu \\
-\mu & 0
\end{array}\right)
$$

where $\mu=\omega_{2}^{1}$ is a 1-form on U, and the curvature form is

$$
K=d \Omega+\Omega \wedge \Omega=\left(\begin{array}{cc}
0 & d \mu \\
-d \mu & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & k \\
-k & 0
\end{array}\right) \omega^{1} \wedge \omega^{2}
$$

where k is the sectional curvature of $d s^{2}$.
Set

$$
\boldsymbol{v}_{j}:=d f\left(\boldsymbol{e}_{j}\right) \quad(j=1,2) \quad \text { and } \quad \boldsymbol{v}_{3}=\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}
$$

where " \times " denotes the vector product of \mathbb{R}^{3}. Then $\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$ is orthonormal in \mathbb{R}^{3}. In particular we have the orthogonal matrix valued function

$$
\mathcal{F}: U \ni p \mapsto \mathcal{F}(p)=\left[\boldsymbol{v}_{1}(p), \boldsymbol{v}_{2}(p), \boldsymbol{v}_{3}(p)\right] \in \mathrm{SO}(3)
$$

which is called the adapted frame of f with respect to $\left[\boldsymbol{e}_{j}\right]$. We call \boldsymbol{v}_{3} the unit normal vector field of f. Define two differential forms h^{j} by

$$
\begin{equation*}
h^{j}:=-\left\langle d \boldsymbol{v}_{3}, \boldsymbol{v}_{j}\right\rangle \quad(j=1,2) \tag{6.5}
\end{equation*}
$$

The pair $\left(h^{j}\right)_{j=1,2}$ is called the second fundamental form.

Lemma 6.6.

$$
\begin{aligned}
d \boldsymbol{v}_{1} & =-\mu \boldsymbol{v}_{2}+h^{1} \boldsymbol{v}_{3} \\
d \boldsymbol{v}_{2} & =\mu \boldsymbol{v}_{1}+h^{2} \boldsymbol{v}_{3} \\
d \boldsymbol{v}_{3} & =-h^{1} \boldsymbol{v}_{1}-h^{2} \boldsymbol{v}_{2}
\end{aligned}
$$

in other words,

$$
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \widetilde{\Omega}=\left(\begin{array}{ccc}
0 & -\mu & -h^{1} \\
\mu & 0 & -h^{2} \\
h^{1} & h^{2} & 0
\end{array}\right)
$$

Exercises

6-1 Prove Theorem 6.5 for $k>0$.
6-2 Prove Lemma 6.6.

[^0]: ${ }^{7}$ The original version of (5.8) is wrong. See the revised version on July 26.

