25 MTH.B502; Sect. 7

7 Fundamental theorem for surfaces in space forms

7.1 Surfaces in 3-dimensional Riemannian manifolds

Let (N3, g) be an oriented Riemannian 3-manifold, and f: M? — N3 an immersion of an oriented
2-manifold M? into N3. Then the pull-back ds? of the Riemannian metric g by f defined as

(7.1) ds*(X,Y) = f*g(X,Y) = g (df (X),df (V)

is a Riemannian metric on M?2. We call ds? the first fundamental form of f.

Take an orthonormal frame [eq, es] with respect to ds? on a domain U C M? compatible to
the orientation of M2, and set v; := df (e;) (j = 1,2). Then at each point p € U, [v1(p), v2(p)] is
an orthonormal basis of df (T,M?) C Ty, N?, by the definition of ds?:

g(vi,v;) = g(df (€:), df (e;)) = ds*(es, €5) = b,

where d;; denotes Kronecker’s delta symbol.

Since df (T, M?)* is one dimensional subspace of T}, N® and N? is oriented, there exists the
unique vector field v3 on M3 along an immersion f such that [v1,vs,v3] is an orthonormal frame
compatible to the orientation of N3. We call vz the unit normal vector field to f. By definition,
the unit normal vector field does not depend on choice of orthonormal frame.

If (N3, g) is expressed as a submanifold of a (pseudo) Euclidean space RY, each vector v; is
interpreted as an R¥-valued function on U. So we obtain a couple of 1-forms on U by

(7.2) B = —g(dvs,v;) (j=1,2),

where d denotes a derivative of a vector valued function on U. The second fundamental form, or
the shape operator of f is defined as

(7.3) h:= h'e; + hZes.

It can be easily shown that the definition (7.3) of h does not depend on choice of orthonormal
frames. Thus, for each p € M?, we obtain a linear map

h: T,M? > X — h'(X)e; + h*(X)eq € T,M?.
We set functions h’ (4,5 = 1,2) on U by
(7.4) h = h'(e;) = g(dvs(e;),v;) = (dvs(e;), v;)
where ( , ) is the inner product of RY whose restriction coincides with g.

Lemma 7.1. hi = h3.

Proof. Since df ([e1, e2]) is perpendicular to vs,

—h% = <d'l)3(€2),'l)1> = €3 <’03,'1)1> - <’l)3,d’01(€2)> = <’Ug,€2(df€1)>
= — (vs, e1(df (e2)) + df ([e1, €2])) = — (vs, dva(er)) = (dvs(er),va) = —h3. O

Definition 7.2. Under the situation above, the extrinsic curvature Koy and the mean curvature

H of the surface f are defined by

_ hi1 + haa

Kext := hih3 — hih? = h* Ah?(eq, e2), H: 5
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7.2 The fundamental theorem for surfaces in space forms

Let f: M? — N3(k) be an immersion, where kg is a real number and

H? (ko) (ko < 0),
N3(k‘0) = RB (kO - 0)7
S3(ko) (ko > 0).

We denote ds? and h by the first and second fundamental forms of f. Take a orthonormal frame
[e1, e2] on a domain U C (M?2,ds?), and denote by (w?) its dual frame. Then

(7.5) dp = kw' A w? (1= wy)

holds, where wi is the component of the connection form, and k is the sectional curvature.
Theorem 7.3. Under the situation above,

(7.6) k= Kot + ko, dh' = h? A p, dh® = —h' A p

hold.

Proof. First we assume ko = 0, that is, f: M? — R3. We set F := (v, v2,v3), where v; = df (e;)
(j = 1,2) and v3 is the unit normal vector field. Then the map F: U — SO(3) satisfies

B B 0 pu —ht
(7.7) dF = F12, Q=|-p 0 -—h?
Rt RZ 0

as seen in Exercise 6-2. Then the compatibility condition for (7.7) is computed as

o 0 du —dh' 0 ~h AR —p A2
O=d+ QN2 =|—-duy 0 —dh? |+ | -h?>Ah! 0 WA h!
dht dh? 0 “hZAp hAu 0
0 dp—h* Ah? —dh' +h2 A p
= | —dp+ht A B2 0 —dh®> —h* Ap |,
dht —h2Apu dR?P+h'Ap 0

which is equivalent to (7.6) for ko = 0.

Next, we consider the case ko = —c? < 0. Let v; = df(e;) (j = 1,2) and take the unit normal
vector field v3. Setting vg = cf, F := (vo, v1,v2,v3) is a (pseudo) orthonormal frame of R} along
the map f. Here, we have

dvg = cdf = c(w'vy + w?vy),
dvy = aw'vg — uvo + hl’Ug,
dvy = cw?vg + p, + h*vs,

d'v3 = —hlvl — h2’03,

that is,

- — 1
(7.8) AF=r0, 02=|%,
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The integrability condition of (7.8) is
0 cdw'  cdw? 0
= = =~ | cdw! 0 dp  —dht
O=dR2+ 02NN = cdo®  —dp 0 —dn

0 dh'  dh? 0

—cw? A cwt A p —c(w! ARY +w? A K?)
c,u/\w 0 Awl Aw? — bt AR? —u A h?
—cu/\w Aw? Awt —h2AR! 0 ARt
—hZApu hY A p 0
0 0 0 0
10 0 dp+ wr Aw2 —h' AR —dh' +h2 A
T 10 —du—cwt Aw? +htAR? 0 —dh? —h'Ap |’
0 dht —h2 A p dh? +h' A p 0

here we used the relation

dw1:2w5/\w;:w2/\w%:w2/\u, dw? = —w! A p,

S

and (cf. Lemma 7.1)
(W AR +w? AR?)(er,er) = ht(ez) — h(e1) = hy — h? = 0.
Thus, we have (7.6) for kg = —c?.

The case kg = ¢ > 0, the adapted frame F := (vg,v1,...,v,), where vg = cf satisfies
0 —cw! —cw? 0
~ ~ cw! 0 1 —h!
(79) d]: — .7:9, Q — cw2 7}]/ O 7h2 )

0 Al h? 0
whose integrability condition is equivalent to (7.6) for ko = c2. O

Since (7.6) is the integrability condition for (7.7), (7.8) or (7.9), the following “fundamental
theorem” holds:

Theorem 7.4 (The fundamental theorem for surfaces). Let U C R? be a simply connected domain
and ds?® a Riemannian metric on U. Assume that a pair of one forms (h', h?) satisfies (7.6) for a
real number ko, where p = w3 is the connection form with respect to an orthonormal frame [e1, 2]
on U. Then there exists an immersion f: U — N3(ko) whose first and second fundamental forms
are ds® and h = h'e, + h2es, respectively.

The first equality of (7.6) is called the Gauss equation, and the last two equalities the Codazzi
equation. Remark that the Codazzi equation does not depend on the curvature kg of the ambient
space.

Lemma 7.5. Let (U,ds?) be a domain of R? with Riemannian metric ds®>. Take an orthonormal
frame [e1, e3] and denote by p = w3 its connection form. If a pair (h', h?) of one forms satisfy the
Codazzi equation

(7.10) dh' = h? A p, dh?® = —h* A p,
another pair (R', h?) = (h' + tw', h? + tw?) also satisfies the Codazzi equation:
dh' = h® A p, dh? = —h' A p,

where (w?) is the dual of [e;].



MTH.B502; Sect. 7 28

Proof. By Lemma 2.17, we have
dw' =W Awy = w? A p, dw? = w Nwi = —w' Ap,

namely, (w!,w?) satisfies the Codazzi equation (7.10). The equation (7.10) is linear in (h?), the
conclusion follows. O

Thus we have the following, so called the “Lawson correspondence” theorem:

Theorem 7.6. Let f: U — N3(ko) be an immersion of constant mean curvature H defined on a
simply-connected domain U C R%. Then there exists an immersion f,;oz U — N3(ko) of constant

mean curvature H + t sharing the first fundamental form with f, where ko = ko — t2 — 2HL.

Proof. Let (h', h?) be the second fundamental form of f. Setting (h', h?) = (h', h?) 4 (w',w?), the
first fundamental form ds® of f and (h', h?) satisfies (7.6) for ko. Thus, we have f; as desired. [

Example 7.7. Let f: U — R3 be a minimal surface (that is, with zero mean curvature). Then
there exists fi: U — H?(—1) of constant mean curvature 1 with the same first fundamental form
as fi.



