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7 Fundamental theorem for surfaces in space forms

7.1 Surfaces in 3-dimensional Riemannian manifolds

Let (N3, g) be an oriented Riemannian 3-manifold, and f : M2 → N3 an immersion of an oriented
2-manifold M2 into N3. Then the pull-back ds2 of the Riemannian metric g by f defined as

(7.1) ds2(X,Y ) := f∗g(X,Y ) = g
(
df(X), df(Y )

)
is a Riemannian metric on M2. We call ds2 the first fundamental form of f .

Take an orthonormal frame [e1, e2] with respect to ds2 on a domain U ⊂ M2 compatible to
the orientation of M2, and set vj := df(ej) (j = 1, 2). Then at each point p ∈ U , [v1(p),v2(p)] is
an orthonormal basis of df(TpM

2) ⊂ Tf(p)N
3, by the definition of ds2:

g(vi,vj) = g
(
df(ei), df(ej)

)
= ds2(ei, ej) = δij ,

where δij denotes Kronecker’s delta symbol.
Since df(TpM

2)⊥ is one dimensional subspace of Tf(p)N
3 and N3 is oriented, there exists the

unique vector field v3 on M3 along an immersion f such that [v1,v2,v3] is an orthonormal frame
compatible to the orientation of N3. We call v3 the unit normal vector field to f . By definition,
the unit normal vector field does not depend on choice of orthonormal frame.

If (N3, g) is expressed as a submanifold of a (pseudo) Euclidean space RN , each vector vj is
interpreted as an RN -valued function on U . So we obtain a couple of 1-forms on U by

(7.2) hj := −g(dv3,vj) (j = 1, 2),

where d denotes a derivative of a vector valued function on U . The second fundamental form, or
the shape operator of f is defined as

(7.3) h := h1e1 + h2e2.

It can be easily shown that the definition (7.3) of h does not depend on choice of orthonormal
frames. Thus, for each p ∈ M2, we obtain a linear map

h : TpM
2 3 X 7→ h1(X)e1 + h2(X)e2 ∈ TpM

2.

We set functions hi
j (i, j = 1, 2) on U by

(7.4) hi
j := hi(ej) = g(dv3(ei),vj) = 〈dv3(ei),vj〉 ,

where 〈 , 〉 is the inner product of RN whose restriction coincides with g.

Lemma 7.1. h1
2 = h2

1.

Proof. Since df([e1, e2]) is perpendicular to v3,

−h1
2 = 〈dv3(e2),v1〉 = e2 〈v3,v1〉 − 〈v3, dv1(e2)〉 = −〈v3, e2(dfe1)〉
= −〈v3, e1(df(e2)) + df([e1, e2])〉 = −〈v3, dv2(e1)〉 = 〈dv3(e1),v2〉 = −h2

1.

Definition 7.2. Under the situation above, the extrinsic curvature Kext and the mean curvature
H of the surface f are defined by

Kext := h1
1h

2
2 − h1

2h
2
1 = h1 ∧ h2(e1, e2), H :=

h11 + h22

2
.
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7.2 The fundamental theorem for surfaces in space forms

Let f : M2 → N3(k) be an immersion, where k0 is a real number and

N3(k0) :=


H3(k0) (k0 < 0),

R3 (k0 = 0),

S3(k0) (k0 > 0).

We denote ds2 and h by the first and second fundamental forms of f . Take a orthonormal frame
[e1, e2] on a domain U ⊂ (M2, ds2), and denote by (ωj) its dual frame. Then

(7.5) dµ = kω1 ∧ ω2 (µ := ω1
2)

holds, where ω1
2 is the component of the connection form, and k is the sectional curvature.

Theorem 7.3. Under the situation above,

(7.6) k = Kext + k0, dh1 = h2 ∧ µ, dh2 = −h1 ∧ µ

hold.

Proof. First we assume k0 = 0, that is, f : M2 → R3. We set F := (v1,v2,v3), where vj = df(ej)
(j = 1, 2) and v3 is the unit normal vector field. Then the map F : U → SO(3) satisfies

(7.7) dF = FΩ̃, Ω̃ =

 0 µ −h1

−µ 0 −h2

h1 h2 0


as seen in Exercise 6-2. Then the compatibility condition for (7.7) is computed as

O = dΩ̃ + Ω̃ ∧ Ω̃ =

 0 dµ −dh1

−dµ 0 −dh2

dh1 dh2 0

+

 0 −h1 ∧ h2 −µ ∧ h2

−h2 ∧ h1 0 µ ∧ h1

−h2 ∧ µ h1 ∧ µ 0


=

 0 dµ− h1 ∧ h2 −dh1 + h2 ∧ µ
−dµ+ h1 ∧ h2 0 −dh2 − h1 ∧ µ
dh1 − h2 ∧ µ dh2 + h1 ∧ µ 0

 ,

which is equivalent to (7.6) for k0 = 0.
Next, we consider the case k0 = −c2 < 0. Let vj = df(ej) (j = 1, 2) and take the unit normal

vector field v3. Setting v0 = cf , F := (v0,v1,v2,v3) is a (pseudo) orthonormal frame of R4
1 along

the map f . Here, we have

dv0 = c df = c(ω1v1 + ω2v2),

dv1 = cω1v0 − µv2 + h1v3,

dv2 = cω2v0 + µv1 + h2v3,

dv3 = −h1v1 − h2v3,

that is,

(7.8) dF = FΩ̃, Ω̃ =


0 cω1 cω2 0

cω1 0 µ −h1

cω2 −µ 0 −h2

0 h1 h2 0

 .
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The integrability condition of (7.8) is

O = dΩ̃ + Ω̃ ∧ Ω̃ =


0 c dω1 c dω2 0

c dω1 0 dµ −dh1

c dω2 −dµ 0 −dh2

0 dh1 dh2 0



+


0 −cω2 ∧ µ cω1 ∧ µ −c(ω1 ∧ h1 + ω2 ∧ h2)

cµ ∧ ω2 0 c2ω1 ∧ ω2 − h1 ∧ h2 −µ ∧ h2

−cµ ∧ ω1 c2ω2 ∧ ω1 − h2 ∧ h1 0 µ ∧ h1

0 −h2 ∧ µ h1 ∧ µ 0



=


0 0 0 0
0 0 dµ+ c2ω1 ∧ ω2 − h1 ∧ h2 −dh1 + h2 ∧ µ
0 −dµ− c2ω1 ∧ ω2 + h1 ∧ h2 0 −dh2 − h1 ∧ µ
0 dh1 − h2 ∧ µ dh2 + h1 ∧ µ 0

 ,

here we used the relation

dω1 =
∑
s

ωs ∧ ω1
s = ω2 ∧ ω1

2 = ω2 ∧ µ, dω2 = −ω1 ∧ µ,

and (cf. Lemma 7.1)

(ω1 ∧ h1 + ω2 ∧ h2)(e1, e2) = h1(e2)− h2(e1) = h1
2 − h2

1 = 0.

Thus, we have (7.6) for k0 = −c2.
The case k0 = c2 > 0, the adapted frame F := (v0,v1, . . . ,vn), where v0 = cf satisfies

(7.9) dF = FΩ̃, Ω̃ =


0 −cω1 −cω2 0

cω1 0 µ −h1

cω2 −µ 0 −h2

0 h1 h2 0

 ,

whose integrability condition is equivalent to (7.6) for k0 = c2.

Since (7.6) is the integrability condition for (7.7), (7.8) or (7.9), the following “fundamental
theorem” holds:

Theorem 7.4 (The fundamental theorem for surfaces). Let U ⊂ R2 be a simply connected domain
and ds2 a Riemannian metric on U . Assume that a pair of one forms (h1, h2) satisfies (7.6) for a
real number k0, where µ = ω1

2 is the connection form with respect to an orthonormal frame [e1, e2]
on U . Then there exists an immersion f : U → N3(k0) whose first and second fundamental forms
are ds2 and h = h1e1 + h2e2, respectively.

The first equality of (7.6) is called the Gauss equation, and the last two equalities the Codazzi
equation. Remark that the Codazzi equation does not depend on the curvature k0 of the ambient
space.

Lemma 7.5. Let (U, ds2) be a domain of R2 with Riemannian metric ds2. Take an orthonormal
frame [e1, e2] and denote by µ = ω1

2 its connection form. If a pair (h1, h2) of one forms satisfy the
Codazzi equation

(7.10) dh1 = h2 ∧ µ, dh2 = −h1 ∧ µ,

another pair (h̃1, h̃2) = (h1 + tω1, h2 + tω2) also satisfies the Codazzi equation:

dh̃1 = h̃2 ∧ µ, dh̃2 = −h̃1 ∧ µ,

where (ωj) is the dual of [ej ].
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Proof. By Lemma 2.17, we have

dω1 = ω2 ∧ ω1
2 = ω2 ∧ µ, dω2 = ω1 ∧ ω2

1 = −ω1 ∧ µ,

namely, (ω1, ω2) satisfies the Codazzi equation (7.10). The equation (7.10) is linear in (hj), the
conclusion follows.

Thus we have the following, so called the “Lawson correspondence” theorem:

Theorem 7.6. Let f : U → N3(k0) be an immersion of constant mean curvature H defined on a
simply-connected domain U ⊂ R2. Then there exists an immersion fk̃0

: U → N3(k̃0) of constant
mean curvature H + t sharing the first fundamental form with f , where k̃0 = k0 − t2 − 2Ht.

Proof. Let (h1, h2) be the second fundamental form of f . Setting (h̃1, h̃2) = (h1, h2)+(ω1, ω2), the
first fundamental form ds2 of f and (h̃1, h̃2) satisfies (7.6) for k̃0. Thus, we have fk̃0

as desired.

Example 7.7. Let f : U → R3 be a minimal surface (that is, with zero mean curvature). Then
there exists f1 : U → H3(−1) of constant mean curvature 1 with the same first fundamental form
as f1.


