7 Fundamental theorem for surfaces in space forms

7.1 Surfaces in 3-dimensional Riemannian manifolds

Let $\left(N^{3}, g\right)$ be an oriented Riemannian 3-manifold, and $f: M^{2} \rightarrow N^{3}$ an immersion of an oriented 2-manifold M^{2} into N^{3}. Then the pull-back $d s^{2}$ of the Riemannian metric g by f defined as

$$
\begin{equation*}
d s^{2}(X, Y):=f^{*} g(X, Y)=g(d f(X), d f(Y)) \tag{7.1}
\end{equation*}
$$

is a Riemannian metric on M^{2}. We call $d s^{2}$ the first fundamental form of f.
Take an orthonormal frame $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ with respect to $d s^{2}$ on a domain $U \subset M^{2}$ compatible to the orientation of M^{2}, and set $\boldsymbol{v}_{j}:=d f\left(\boldsymbol{e}_{j}\right)(j=1,2)$. Then at each point $p \in U,\left[\boldsymbol{v}_{1}(p), \boldsymbol{v}_{2}(p)\right]$ is an orthonormal basis of $d f\left(T_{p} M^{2}\right) \subset T_{f(p)} N^{3}$, by the definition of $d s^{2}$:

$$
g\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=g\left(d f\left(\boldsymbol{e}_{i}\right), d f\left(\boldsymbol{e}_{j}\right)\right)=d s^{2}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j}
$$

where $\delta_{i j}$ denotes Kronecker's delta symbol.
Since $d f\left(T_{p} M^{2}\right)^{\perp}$ is one dimensional subspace of $T_{f(p)} N^{3}$ and N^{3} is oriented, there exists the unique vector field \boldsymbol{v}_{3} on M^{3} along an immersion f such that $\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$ is an orthonormal frame compatible to the orientation of N^{3}. We call \boldsymbol{v}_{3} the unit normal vector field to f. By definition, the unit normal vector field does not depend on choice of orthonormal frame.

If $\left(N^{3}, g\right)$ is expressed as a submanifold of a (pseudo) Euclidean space \mathbb{R}^{N}, each vector \boldsymbol{v}_{j} is interpreted as an \mathbb{R}^{N}-valued function on U. So we obtain a couple of 1 -forms on U by

$$
\begin{equation*}
h^{j}:=-g\left(d \boldsymbol{v}_{3}, \boldsymbol{v}_{j}\right) \quad(j=1,2), \tag{7.2}
\end{equation*}
$$

where d denotes a derivative of a vector valued function on U. The second fundamental form, or the shape operator of f is defined as

$$
\begin{equation*}
\boldsymbol{h}:=h^{1} \boldsymbol{e}_{1}+h^{2} \boldsymbol{e}_{2} \tag{7.3}
\end{equation*}
$$

It can be easily shown that the definition (7.3) of \boldsymbol{h} does not depend on choice of orthonormal frames. Thus, for each $p \in M^{2}$, we obtain a linear map

$$
\boldsymbol{h}: T_{p} M^{2} \ni X \mapsto h^{1}(X) \boldsymbol{e}_{1}+h^{2}(X) \boldsymbol{e}_{2} \in T_{p} M^{2}
$$

We set functions $h_{j}^{i}(i, j=1,2)$ on U by

$$
\begin{equation*}
h_{j}^{i}:=h^{i}\left(\boldsymbol{e}_{j}\right)=g\left(d \boldsymbol{v}_{3}\left(\boldsymbol{e}_{i}\right), \boldsymbol{v}_{j}\right)=\left\langle d \boldsymbol{v}_{3}\left(\boldsymbol{e}_{i}\right), \boldsymbol{v}_{j}\right\rangle, \tag{7.4}
\end{equation*}
$$

where \langle,$\rangle is the inner product of \mathbb{R}^{N}$ whose restriction coincides with g.
Lemma 7.1. $h_{2}^{1}=h_{1}^{2}$.
Proof. Since $d f\left(\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]\right)$ is perpendicular to \boldsymbol{v}_{3},

$$
\begin{aligned}
-h_{2}^{1} & =\left\langle d \boldsymbol{v}_{3}\left(\boldsymbol{e}_{2}\right), \boldsymbol{v}_{1}\right\rangle=\boldsymbol{e}_{2}\left\langle\boldsymbol{v}_{3}, \boldsymbol{v}_{1}\right\rangle-\left\langle\boldsymbol{v}_{3}, d \boldsymbol{v}_{1}\left(\boldsymbol{e}_{2}\right)\right\rangle=-\left\langle\boldsymbol{v}_{3}, \boldsymbol{e}_{2}\left(d f \boldsymbol{e}_{1}\right)\right\rangle \\
& =-\left\langle\boldsymbol{v}_{3}, \boldsymbol{e}_{1}\left(d f\left(\boldsymbol{e}_{2}\right)\right)+d f\left(\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]\right)\right\rangle=-\left\langle\boldsymbol{v}_{3}, d \boldsymbol{v}_{2}\left(\boldsymbol{e}_{1}\right)\right\rangle=\left\langle d \boldsymbol{v}_{3}\left(\boldsymbol{e}_{1}\right), \boldsymbol{v}_{2}\right\rangle=-h_{1}^{2}
\end{aligned}
$$

Definition 7.2. Under the situation above, the extrinsic curvature $K_{\text {ext }}$ and the mean curvature H of the surface f are defined by

$$
K_{\mathrm{ext}}:=h_{1}^{1} h_{2}^{2}-h_{2}^{1} h_{1}^{2}=h^{1} \wedge h^{2}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right), \quad H:=\frac{h_{11}+h_{22}}{2}
$$

2. August, 2022.

7.2 The fundamental theorem for surfaces in space forms

Let $f: M^{2} \rightarrow N^{3}(k)$ be an immersion, where k_{0} is a real number and

$$
N^{3}\left(k_{0}\right):= \begin{cases}H^{3}\left(k_{0}\right) & \left(k_{0}<0\right) \\ \mathbb{R}^{3} & \left(k_{0}=0\right) \\ S^{3}\left(k_{0}\right) & \left(k_{0}>0\right)\end{cases}
$$

We denote $d s^{2}$ and \boldsymbol{h} by the first and second fundamental forms of f. Take a orthonormal frame [$\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$] on a domain $U \subset\left(M^{2}, d s^{2}\right)$, and denote by $\left(\omega^{j}\right)$ its dual frame. Then

$$
\begin{equation*}
d \mu=k \omega^{1} \wedge \omega^{2} \quad\left(\mu:=\omega_{2}^{1}\right) \tag{7.5}
\end{equation*}
$$

holds, where ω_{2}^{1} is the component of the connection form, and k is the sectional curvature.
Theorem 7.3. Under the situation above,

$$
\begin{equation*}
k=K_{\mathrm{ext}}+k_{0}, \quad d h^{1}=h^{2} \wedge \mu, \quad d h^{2}=-h^{1} \wedge \mu \tag{7.6}
\end{equation*}
$$

hold.
Proof. First we assume $k_{0}=0$, that is, $f: M^{2} \rightarrow \mathbb{R}^{3}$. We set $\mathcal{F}:=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$, where $\boldsymbol{v}_{j}=d f\left(\boldsymbol{e}_{j}\right)$ $(j=1,2)$ and \boldsymbol{v}_{3} is the unit normal vector field. Then the map $\mathcal{F}: U \rightarrow \mathrm{SO}(3)$ satisfies

$$
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \widetilde{\Omega}=\left(\begin{array}{ccc}
0 & \mu & -h^{1} \tag{7.7}\\
-\mu & 0 & -h^{2} \\
h^{1} & h^{2} & 0
\end{array}\right)
$$

as seen in Exercise 6-2. Then the compatibility condition for (7.7) is computed as

$$
\begin{aligned}
O & =d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=\left(\begin{array}{ccc}
0 & d \mu & -d h^{1} \\
-d \mu & 0 & -d h^{2} \\
d h^{1} & d h^{2} & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & -h^{1} \wedge h^{2} & -\mu \wedge h^{2} \\
-h^{2} \wedge h^{1} & 0 & \mu \wedge h^{1} \\
-h^{2} \wedge \mu & h^{1} \wedge \mu & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & d \mu-h^{1} \wedge h^{2} & -d h^{1}+h^{2} \wedge \mu \\
-d \mu+h^{1} \wedge h^{2} & 0 & -d h^{2}-h^{1} \wedge \mu \\
d h^{1}-h^{2} \wedge \mu & d h^{2}+h^{1} \wedge \mu & 0
\end{array}\right)
\end{aligned}
$$

which is equivalent to (7.6) for $k_{0}=0$.
Next, we consider the case $k_{0}=-c^{2}<0$. Let $\boldsymbol{v}_{j}=d f\left(\boldsymbol{e}_{j}\right)(j=1,2)$ and take the unit normal vector field \boldsymbol{v}_{3}. Setting $\boldsymbol{v}_{0}=c f, \mathcal{F}:=\left(\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$ is a (pseudo) orthonormal frame of \mathbb{R}_{1}^{4} along the map f. Here, we have

$$
\begin{aligned}
d \boldsymbol{v}_{0} & =c d f=c\left(\omega^{1} \boldsymbol{v}_{1}+\omega^{2} \boldsymbol{v}_{2}\right) \\
d \boldsymbol{v}_{1} & =c \omega^{1} \boldsymbol{v}_{0}-\mu \boldsymbol{v}_{2}+h^{1} \boldsymbol{v}_{3} \\
d \boldsymbol{v}_{2} & =c \omega^{2} \boldsymbol{v}_{0}+\mu \boldsymbol{v}_{1}+h^{2} \boldsymbol{v}_{3} \\
d \boldsymbol{v}_{3} & =-h^{1} \boldsymbol{v}_{1}-h^{2} \boldsymbol{v}_{3}
\end{aligned}
$$

that is,

$$
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \widetilde{\Omega}=\left(\begin{array}{cccc}
0 & c \omega^{1} & c \omega^{2} & 0 \tag{7.8}\\
c \omega^{1} & 0 & \mu & -h^{1} \\
c \omega^{2} & -\mu & 0 & -h^{2} \\
0 & h^{1} & h^{2} & 0
\end{array}\right)
$$

The integrability condition of (7.8) is

$$
\begin{aligned}
O & =d \widetilde{\Omega}+\widetilde{\Omega} \wedge \widetilde{\Omega}=\left(\begin{array}{cccc}
0 & c d \omega^{1} & c d \omega^{2} & 0 \\
c d \omega^{1} & 0 & d \mu & -d h^{1} \\
c d \omega^{2} & -d \mu & 0 & -d h^{2} \\
0 & d h^{1} & d h^{2} & 0
\end{array}\right) \\
& +\left(\begin{array}{cccc}
0 & -c \omega^{2} \wedge \mu & c \omega^{1} \wedge \mu & -c\left(\omega^{1} \wedge h^{1}+\omega^{2} \wedge h^{2}\right) \\
c \mu \wedge \omega^{2} & 0 & c^{2} \omega^{1} \wedge \omega^{2}-h^{1} \wedge h^{2} & -\mu \wedge h^{2} \\
-c \mu \wedge \omega^{1} & c^{2} \omega^{2} \wedge \omega^{1}-h^{2} \wedge h^{1} & 0 & \mu \wedge h^{1} \\
0 & -h^{2} \wedge \mu & h^{1} \wedge \mu & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & d \mu+c^{2} \omega^{1} \wedge \omega^{2}-h^{1} \wedge h^{2} & -d h^{1}+h^{2} \wedge \mu \\
0 & -d \mu-c^{2} \omega^{1} \wedge \omega^{2}+h^{1} \wedge h^{2} & 0 & -d h^{2}-h^{1} \wedge \mu \\
0 & d h^{1}-h^{2} \wedge \mu & d h^{2}+h^{1} \wedge \mu & 0
\end{array}\right)
\end{aligned}
$$

here we used the relation

$$
d \omega^{1}=\sum_{s} \omega^{s} \wedge \omega_{s}^{1}=\omega^{2} \wedge \omega_{2}^{1}=\omega^{2} \wedge \mu, \quad d \omega^{2}=-\omega^{1} \wedge \mu
$$

and (cf. Lemma 7.1)

$$
\left(\omega^{1} \wedge h^{1}+\omega^{2} \wedge h^{2}\right)\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)=h^{1}\left(\boldsymbol{e}_{2}\right)-h^{2}\left(\boldsymbol{e}_{1}\right)=h_{2}^{1}-h_{1}^{2}=0
$$

Thus, we have (7.6) for $k_{0}=-c^{2}$.
The case $k_{0}=c^{2}>0$, the adapted frame $\mathcal{F}:=\left(\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)$, where $\boldsymbol{v}_{0}=c f$ satisfies

$$
d \mathcal{F}=\mathcal{F} \widetilde{\Omega}, \quad \widetilde{\Omega}=\left(\begin{array}{cccc}
0 & -c \omega^{1} & -c \omega^{2} & 0 \tag{7.9}\\
c \omega^{1} & 0 & \mu & -h^{1} \\
c \omega^{2} & -\mu & 0 & -h^{2} \\
0 & h^{1} & h^{2} & 0
\end{array}\right)
$$

whose integrability condition is equivalent to (7.6) for $k_{0}=c^{2}$.
Since (7.6) is the integrability condition for (7.7), (7.8) or (7.9), the following "fundamental theorem" holds:

Theorem 7.4 (The fundamental theorem for surfaces). Let $U \subset \mathbb{R}^{2}$ be a simply connected domain and $d s^{2}$ a Riemannian metric on U. Assume that a pair of one forms (h^{1}, h^{2}) satisfies (7.6) for a real number k_{0}, where $\mu=\omega_{2}^{1}$ is the connection form with respect to an orthonormal frame $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ on U. Then there exists an immersion $f: U \rightarrow N^{3}\left(k_{0}\right)$ whose first and second fundamental forms are $d s^{2}$ and $\boldsymbol{h}=h^{1} \boldsymbol{e}_{1}+h^{2} \boldsymbol{e}_{2}$, respectively.

The first equality of (7.6) is called the Gauss equation, and the last two equalities the Codazzi equation. Remark that the Codazzi equation does not depend on the curvature k_{0} of the ambient space.
Lemma 7.5. Let $\left(U, d s^{2}\right)$ be a domain of \mathbb{R}^{2} with Riemannian metric ds ${ }^{2}$. Take an orthonormal frame $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ and denote by $\mu=\omega_{2}^{1}$ its connection form. If a pair $\left(h^{1}, h^{2}\right)$ of one forms satisfy the Codazzi equation

$$
\begin{equation*}
d h^{1}=h^{2} \wedge \mu, \quad d h^{2}=-h^{1} \wedge \mu \tag{7.10}
\end{equation*}
$$

another pair $\left(\tilde{h}^{1}, \tilde{h}^{2}\right)=\left(h^{1}+t \omega^{1}, h^{2}+t \omega^{2}\right)$ also satisfies the Codazzi equation:

$$
d \tilde{h}^{1}=\tilde{h}^{2} \wedge \mu, \quad d \tilde{h}^{2}=-\tilde{h}^{1} \wedge \mu
$$

where $\left(\omega^{j}\right)$ is the dual of $\left[\boldsymbol{e}_{j}\right]$.

Proof. By Lemma 2.17, we have

$$
d \omega^{1}=\omega^{2} \wedge \omega_{2}^{1}=\omega^{2} \wedge \mu, \quad d \omega^{2}=\omega^{1} \wedge \omega_{1}^{2}=-\omega^{1} \wedge \mu,
$$

namely, $\left(\omega^{1}, \omega^{2}\right)$ satisfies the Codazzi equation (7.10). The equation (7.10) is linear in $\left(h^{j}\right)$, the conclusion follows.

Thus we have the following, so called the "Lawson correspondence" theorem:
Theorem 7.6. Let $f: U \rightarrow N^{3}\left(k_{0}\right)$ be an immersion of constant mean curvature $\underset{\tilde{k}}{H}$ defined on a simply-connected domain $U \subset \mathbb{R}^{2}$. Then there exists an immersion $f_{\tilde{k}_{0}}: U \rightarrow N^{3}\left(\tilde{k}_{0}\right)$ of constant mean curvature $H+t$ sharing the first fundamental form with f, where $\tilde{k}_{0}=k_{0}-t^{2}-2 H t$.

Proof. Let $\left(h^{1}, h^{2}\right)$ be the second fundamental form of f. Setting $\left(\tilde{h}^{1}, \tilde{h}^{2}\right)=\left(h^{1}, h^{2}\right)+\left(\omega^{1}, \omega^{2}\right)$, the first fundamental form $d s^{2}$ of f and $\left(\tilde{h}^{1}, \tilde{h}^{2}\right)$ satisfies (7.6) for \tilde{k}_{0}. Thus, we have $f_{\tilde{k}_{0}}$ as desired.
Example 7.7. Let $f: U \rightarrow \mathbb{R}^{3}$ be a minimal surface (that is, with zero mean curvature). Then there exists $f_{1}: U \rightarrow H^{3}(-1)$ of constant mean curvature 1 with the same first fundamental form as f_{1}.

