Advanced Topics in Geometry E1 (MTH.B505)

Inner products

Kotaro Yamada

kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology
2023/04/18

Inner products

V : an @(dimensional vector space over \mathbb{R}

Definition

An inner product on V is a map

$$
\langle,\rangle): V \times V \ni(\boldsymbol{x}, \boldsymbol{y}) \mapsto\langle\boldsymbol{x}, \boldsymbol{y}\rangle \in \mathbb{R}
$$

which is

- bilinear
- symmetric, and
- positive definite.
$Q<,\rangle: V \times V \rightarrow \mathbb{R} \quad$ is belimeav (7z
$\Leftrightarrow(1)\langle x, \cdot\rangle: V \ni y \mapsto\langle x, y\rangle \in \mathbb{R}$ is livaw
$\langle\cdot x\rangle: V \ni y \mapsto\langle y, x\rangle \in \mathbb{R}$ is linear

$$
\Leftrightarrow\left\{\begin{array}{l}
\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle \\
\langle x, \alpha y\rangle=\alpha\langle x, y\rangle
\end{array}\right.
$$

(1) $\left\{\begin{array}{c}\langle y+z, x\rangle \\ -\end{array}=\right.$

- symmetvic
$\leftrightarrow\langle x, y\rangle=\langle y, x\rangle$
positrivity \langle,$\rangle symm. bilineon form$
〈. > posintive definito
$\leftrightarrow\langle x, x\rangle>0$ whenever $x \neq 0$
Exmmple $\quad V=\mathbb{R}^{2} \quad x=\binom{q_{1}}{x_{2}} \quad y=\binom{y_{1}}{y_{2}}$

$$
\langle x, y\rangle:=x_{1} y_{1}+x_{2} y_{2}
$$

$\Rightarrow\langle$,$\rangle is an inver product.$
(cananical inuer produt on \mathbb{R}^{2})

Inner products on \mathbb{R}^{n}

Example

- \mathbb{R}^{n} : the set of n-dim. column vectors

Set

$$
\langle,\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \ni(\boldsymbol{x}, \boldsymbol{y}) \longmapsto \oplus_{\boldsymbol{c}} A \boldsymbol{y} \in \mathbb{R} .
$$

trans-
$>\langle$,$\rangle is a symmetric bilinear form.$ posits

Fact
An arbitrary inner product of \mathbb{R}^{n} is expressed in this way.

$$
\begin{aligned}
& \langle x, y\rangle:=x^{\top}\binom{4}{s y m m} x=\left(\begin{array}{c}
x^{\prime} \\
\vdots \\
x^{n}
\end{array}\right) y=\left(\begin{array}{c}
y^{\prime} \\
1 \\
j^{n}
\end{array}\right) \\
& =\left(x^{\prime} \cdots x^{n}\right)\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{21} & & \\
\vdots & - & a_{n n}
\end{array}\right)\left(\begin{array}{c}
y^{\prime} \\
\vdots \\
y
\end{array}\right)
\end{aligned}
$$

Positivity of symmetric matrices

$A=\left(a_{i j}\right):$ an $n \times n$-matrix of real components.

Definition

 (intern)$\triangleright A$ is symmetric $\Leftrightarrow{ }^{t} A=A \Leftrightarrow a_{i j}=a_{j i}$ for all indices i and j.
\triangleright a symmetric matrix A is positive definite $\stackrel{1}{t}^{t} \boldsymbol{x} A \boldsymbol{x}>0$ for all $\boldsymbol{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$.

$$
\begin{aligned}
& \text { - }\langle,\rangle \text { : an imner product on } \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& a_{i j}:=\left\langle\theta_{j}, \theta_{j}\right\rangle \\
& \text { the comosinal } \\
& \Rightarrow\langle x, y\rangle=\sum a_{-j} x^{i} y j
\end{aligned}
$$

Example
Example
m R^{2}
L.): bwhever

Let $A:=\left(\begin{array}{ll}1 & a \\ a & 1\end{array}\right),\langle\boldsymbol{x}, \boldsymbol{y}\rangle:={ }^{t} \boldsymbol{x} A \boldsymbol{y}$ for $a \in \mathbb{R}$ symundive
C $($, $)$ is an inner product if and only ir $\underset{\sim}{a l \mid<R}$
positivity \Leftrightarrow all eigenvectors of $A>0$

$$
\begin{aligned}
& \underset{\vdots}{\Leftrightarrow(2 \operatorname{din})}\left(\underset{\lambda \mu}{\left(\operatorname{det}_{\lambda} A>0\right.} \quad \operatorname{tr} A>0\right) \\
& \Leftrightarrow \quad 1-a^{2}>0,2>0 \quad \Leftrightarrow \quad 1-a^{2}>0
\end{aligned}
$$

Orthonormal basis

$(V,\langle\rangle$,$) : an n$-dimensional \mathbb{R}-vector space with inner product \langle,$\rangle .$

Definition

An orthonormal basis of $(V,\langle\rangle$,$) is an n$-tuple $\left[e_{1}, \ldots, e_{n}\right]$ of elements of V sach that

$$
\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\delta_{i j}=\left\{\begin{array}{ll}
1 & (i=j) \\
0 & (i \neq j)
\end{array} .\right.
$$

$$
\left\langle\sin , \theta_{c}\right\rangle=1
$$

$$
A_{i}{ }^{+} e_{j}
$$

$V=\mathbb{R}^{2},\langle$,$\rangle : the canonial muver produt$

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}=\left(x_{1} x_{2}\right)\binom{y_{1}}{y_{0}}
$$

Set $\left\{\begin{array}{l}u_{l}=\frac{1}{\sqrt{2}}\binom{1}{1} \\ u=\frac{1}{\sqrt{2}}\binom{-1}{1}\end{array}\right.$

$$
\begin{aligned}
&=x^{\top} y=x^{\top} I y \\
& \text { the identith: }
\end{aligned}
$$

$\Rightarrow\left[U_{1}, U_{1}\right]$: an orifonamal basis.

Orthonormal basis

Fact（linew dgeloro）
An orthonormal basis of $(V,\langle\rangle$,$) is a basis，of V$ ．

For two orthonormal bases $\left[\boldsymbol{e}_{j}\right]$ and $\left[\boldsymbol{f}_{j}\right]$ ，there exists an orthogonal matrix P with

$$
\left[f_{1}, \ldots, f_{n}\right]=\left[e_{1}, \ldots, e_{n}\right]
$$

Existence of orthonormal basis

The dual basis

V : an n-dimensional \mathbb{R}-vector space.

$$
V^{*}:=\{\alpha: V \rightarrow \mathbb{R} ; \text { linear }\}
$$

- \langle,$\rangle : an inner product;$
(the dual space)

-3, い
$\boldsymbol{\varphi}\left[e_{1}, \ldots, e_{n}\right]$: an orthonormal basis Set

Fact

- $\left[\omega^{1}, \ldots, \omega^{n}\right]$ is a basis on called the dual basis of $\left[e_{1}, \ldots, e_{n}\right]$.

Expression of inner products

- $(V,\langle\rangle$,$) : an n$-dimensional vector space with inner product \langle,
$-\left[\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right]$: an orthonormal basis.
- $\left.\omega^{1}, \ldots, \omega^{n}\right]$: the dual of $\left[\boldsymbol{e}_{j}\right] ; \omega^{k}=\left\langle\boldsymbol{e}_{k}, \cdot\right\rangle$.

$$
\begin{aligned}
& \langle x, y\rangle=\sum_{j=1}^{n} \omega^{f}(x) w^{z}(y) \\
& \because \quad x=x^{\prime} \theta_{1}+\cdots+x^{n} \theta_{n} . \\
& y=y^{\prime} \theta_{i} \cdot \cdots y^{n} \theta_{n} . \\
& \Rightarrow x^{i}=w^{i}(x), y^{i}=w^{\beta}(y) \\
& \left.\quad u(x, y\rangle=x^{\prime} y^{\prime}+\cdots+x^{n} y^{n}\right\rfloor
\end{aligned}
$$

The Euclidean vector space

$\mathbb{R}^{n}:$ the vector space consisting of n-dim. column vectors
-($\langle\boldsymbol{x}, \boldsymbol{y}\rangle):={ }^{t} x y=\sum_{j=1}^{n} x^{j} y^{j}$: The canonical inner product,

$$
\left(\boldsymbol{x}={ }^{t}\left(x^{1}, \ldots, x^{n}\right), \boldsymbol{y}={ }^{t}\left(y^{1}, \ldots, y^{n}\right)\right)
$$

Definition

$\mathbb{E}^{n}:=\left(\mathbb{R}^{n},\langle\rangle,\right):$ the Euclidean vector space.

The Lorentz-Minkowski vector space \Rightarrow definition of Hyperb relic
\mathbb{R}^{n+1} the vector space of $(n+1)$-dim. column vectors space

$$
\begin{aligned}
\left.-\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{L}\right): & =\boldsymbol{v}^{0} y^{0}{ }^{0}+\sum_{j=1}^{n} x^{j} y^{j}: \\
& \left(\boldsymbol{x}={ }^{t}\left(x^{0} x^{1} \ldots, x^{n}\right), \boldsymbol{y}={ }^{t}\left(y^{0}, y^{1}, \ldots, y^{n}\right)\right) .
\end{aligned}
$$

The canonical Lorentzian "inner product".
Definition
$\mathbb{L}^{n+1}=\left(\mathbb{R}^{n+1},\langle,\rangle_{L}\right)$: the Lorentz-Minkowski vector space.

$$
\left(\begin{array}{ll}
\text { Not. } & \langle x, y\rangle_{L}=0 \\
\Rightarrow x=\forall y \in D^{n+1} \\
\Rightarrow x=0 & \text { non degeneracy }
\end{array}\right)
$$

Exercise 1-1

Problem (Ex. 1-1)

Let \langle,$\rangle be an inner product of \mathbb{R}^{2}$ defined by

$$
\underline{\langle\boldsymbol{x}, \boldsymbol{y}\rangle:={ }^{t} \boldsymbol{x} A \boldsymbol{y}} \quad A=\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right)
$$

where a is a real number with $|a|<1$.
Θ Find an orthonormal basis $\left[e_{1}, e_{2}\right]$ with respect to \langle,$\rangle .$
(2) Find row vectors $\hat{\omega}^{j}(j=1,2)$ such that the dual basis $\left[\omega^{j}\right]$ of $\left[e_{j}\right]$ is expressed as
$\omega^{\prime}: R^{2} \rightarrow R$ binar

$$
\omega^{j}(\boldsymbol{x})=\hat{\omega}^{0} x^{2} \quad(j=1,2) \quad(1,2) \text { matix }
$$

Exercise 1-2
 $\langle x, y\rangle=\theta y y^{0}+x^{\prime} y^{\prime}+i y^{2}$

Problem (Ex. 1-2)

Let \mathbb{L}^{3} be the 3-dimensional Lorentz-Minkowski vector space, and fix $x \in \mathbb{L}^{3}$ with $\langle x, x\rangle_{L}=-1$. Take the "orthogonal complement"

$$
W:=\boldsymbol{x}^{\perp}=\left\{\boldsymbol{y} \in \mathbb{L}^{3} ;\langle\boldsymbol{x}, \boldsymbol{y}\rangle\right\} .
$$

- Show that W is 2-dimensional linear subspace of \mathbb{L}^{3}.
- Show that the restriction of \langle,\rangle_{L} to $W \times W$ is a (positive definite) inner product of W.

$$
\begin{aligned}
& x=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \rightarrow\langle x, x\rangle=-1 \\
& \left.W=\left\{\begin{array}{l}
y_{0}^{0} \\
y_{1} \\
y^{2}
\end{array}\right) ;-y^{0} \not x^{0}+y^{1} x^{1}+y^{2} x^{2}=-0\right\} \\
& \text { if } y \in W \rightarrow\left(\langle y, y\rangle_{2}>0 \text { if } y \neq 0\right. \\
& (\leftrightarrow\langle x, y\rangle<=0) \text { conduain }
\end{aligned}
$$

