Advanced Topics in Geometry E1 (MTH.B505)

Inner products

Kotaro Yamada kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/04/18 (2023/04/25 訂正)

Inner products

V: an n-dimensional vector space over $\mathbb R$

Definition

An inner product on ${\cal V}$ is a map

$$\langle \; , \; \rangle : V \times V \ni (\boldsymbol{x}, \boldsymbol{y}) \mapsto \langle \boldsymbol{x}, \boldsymbol{y} \rangle \in \mathbb{R}$$

which is

- bilinear
- symmetric, and
- positive definite.

Inner products on \mathbb{R}^n

Example

- \mathbb{R}^n : the set of n-dim. column vectors
- $A = (a_{ij})$: a symmetric $n \times n$ -matrix of real components.

Set

$$\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \ni (\boldsymbol{x}, \boldsymbol{y}) \longmapsto \boldsymbol{x}^T A \boldsymbol{y} \in \mathbb{R}.$$

- ullet $\langle \ , \ \rangle$ is a symmetric bilinear form.
- ullet $\langle \ , \ \rangle$ is an inner product iff A is positive definite.

Fact

An arbitrary inner product of \mathbb{R}^n is expressed in this way.

Positivity of symmetric matrices

 $A = (a_{ij})$: an $n \times n$ -matrix of real components.

Definition

- A is symmetric $\Leftrightarrow A^T = A \Leftrightarrow a_{ij} = a_{ji}$ for all indices i and j.
- ullet a symmetric matrix A is positive definite $\Leftrightarrow oldsymbol{x}^T A oldsymbol{x} > 0$ for all $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$

Fact

- The eigenvalues of a real symmetric matrix are real numbers.
- A real symmetric matrix A is positive definite if and only if the eigenvalues of A are all positive.

Inner products

Example

Example

Let
$$A:=egin{pmatrix} 1 & a \ a & 1 \end{pmatrix}$$
, $\langle m{x}, m{y} \rangle := m{x}^T A m{y}$ for $a \in \mathbb{R}$

 \bullet $\langle \ , \ \rangle$ is an inner product if and only if |a| < 1.

Inner products

Orthonormal basis

 $(V,\langle\;,\;\rangle)$: an n-dimensional \mathbb{R} -vector space with inner product $\langle\;,\;\rangle$.

Definition

An orthonormal basis of $(V,\langle\;,\;\rangle)$ is an n-tuple $[m{e}_1,\ldots,m{e}_n]$ of elements of V

$$\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = \delta_{ij} = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}.$$

Orthonormal basis

Fact

• An orthonormal basis of (V, \langle , \rangle) is a basis of V.

ullet For two orthonormal bases $[e_j]$ and $[oldsymbol{f}_j]$, there exists an orthogonal matrix P with

$$[\boldsymbol{f}_1,\ldots,\boldsymbol{f}_n]=[\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n]P.$$

Existence of orthonormal basis

Theorem

There exists an orthonormal basis for any finite dimensional vector space V over $\mathbb R$ with inner product $\langle \ , \ \rangle$,

The dual basis

V: an n-dimensional \mathbb{R} -vector space.

$$V^*:=\{\alpha\colon V\to\mathbb{R}\,;\,linear\}\qquad\text{(the dual space)}$$

$$\langle\;,\;\rangle\colon\text{ an inner product;}$$

$$[e_1,\ldots,e_n]\colon\text{ an orthonormal basis}$$

Set

$$\omega^j \colon V \ni \boldsymbol{x} \longmapsto \omega^j(\boldsymbol{x}) := \langle \boldsymbol{e}_j, \boldsymbol{x} \rangle \in \mathbb{R}.$$

Fact

 $[\omega^1,\ldots,\omega^n]$ is a basis of V^* , called the <u>dual basis</u> of $[e_1,\ldots,e_n]$.

Expression of inner products

- \bullet $(V,\langle\ ,\ \rangle):$ an n-dimensional vector space with inner product $\langle\ ,\ \rangle$
- $[e_1,\ldots,e_n]$: an orthonormal basis.
- ullet $[\omega^1,\ldots,\omega^n]$: the dual of $[{m e}_j]$; $\omega^k=\langle {m e}_k,\cdot
 angle$.

Fact

$$\langle \ , \ \rangle = \sum_{j=1}^{n} (\omega^j)^2.$$

The Euclidean vector space

- ullet \mathbb{R}^n : the vector space consisting of n-dim. column vectors
- ullet $\langle m{x}, m{y}
 angle := m{x}^T m{y} = \sum_{j=1}^n x^j y^j :$ The canonical inner product,

$$(\boldsymbol{x} = (x^1, \dots, x^n)^T, \ \boldsymbol{y} = (y^1, \dots, y^n)^T).$$

Definition

 $\mathbb{E}^n:=(\mathbb{R}^n,\langle\ ,\ \rangle)$: the Euclidean vector space.

The Lorentz-Minkowski vector space

ullet \mathbb{R}^{n+1} : the vector space of (n+1)-dim. column vectors

$$\begin{array}{l} \bullet \ \langle \boldsymbol{x}, \boldsymbol{y} \rangle_L := -x^0 y^0 + \sum_{j=1}^n x^j y^j : \\ & (\boldsymbol{x} = (x^0, x^1, \dots, x^n)^T, \ \boldsymbol{y} = (y^0, y^1, \dots, y^n)^T). \end{array}$$

The canonical Lorentzian "inner product".

Definition

 $\mathbb{L}^{n+1} = (\mathbb{R}^{n+1}, \langle , \rangle_L)$: the Lorentz-Minkowski vector space.

Exercise 1-1

Problem (Ex. 1-1)

Let $\langle \; , \; \rangle$ be an inner product of \mathbb{R}^2 defined by

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^T A \boldsymbol{y} \qquad A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix},$$

where a is a real number with |a| < 1.

- ullet Find an orthonormal basis $[oldsymbol{e}_1,oldsymbol{e}_2]$ with respect to $\langle\;,\;
 angle$.
- Find row vectors $\hat{\omega}^j$ (j=1,2) such that the dual basis $[\omega^j]$ of $[e_j]$ is expressed as

$$\omega^j(\boldsymbol{x}) = \hat{\omega}^j \boldsymbol{x} \qquad (j = 1, 2)$$

Exercise 1-2

Problem (Ex. 1-2)

Let \mathbb{L}^3 be the 3-dimensional Lorentz-Minkowski vector space, and fix $x \in \mathbb{L}^3$ with $\langle x, x \rangle_L = -1$. Take the "orthogonal complement"

$$W := \boldsymbol{x}^{\perp} = \{ \boldsymbol{y} \in \mathbb{L}^3 \, ; \, \langle \boldsymbol{x}, \boldsymbol{y} \rangle_L = 0 \}.$$

- Show that W is an 2-dimensional linear subspace of \mathbb{L}^3 .
- Show that the restriction of $\langle \ , \ \rangle_L$ to $W\times W$ is a (positive definite) inner product of W .