Advanced Topics in Geometry E1 (MTH.B505)

Riemannian manifolds

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology
2023/04/25

Exercise 1-1 $\quad \hbar t=\lambda_{1}+\lambda_{2} \quad \cot A=\lambda_{2} \lambda_{2} \quad \lambda_{0} \in \mathbb{R}$

Problem (Ex. 1-1)

positive dafints

Let \langle,$\rangle be an inner product of \mathbb{R}^{2}$ defined by
YA are
\leftrightarrow
where a is a real number with $|a|<1$.

- regional's
\rightarrow Find an orthonormal basis $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ with respect to \langle,$\rangle .$
- Find row vectors $\hat{\omega}^{j}(j=1,2)$ such that the dual basis $\left[\omega^{j}\right]$ of $\left[e_{j}\right]$ is expressed as

$$
\omega^{j}(x)=\hat{\omega}^{j} x \quad(j=1,2)
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
e_{1} & \theta_{2}
\end{array}\right] \quad\left\langle\theta_{i} \theta_{j}\right\rangle=\delta_{i j}} \\
& v_{1}=\binom{1}{0}, v_{2}=\binom{0}{1} \Rightarrow \text { Gram-Schmidt } \\
& \text { artoganalization } \\
& \left\langle v_{1}, v_{1}\right\rangle=(1,0)\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right)\binom{1}{d}=1 \quad v_{1}: \text { unit. } \\
& C_{1}=v_{1}=\binom{1}{0} \\
& \left\langle e_{1}, v_{2}\right\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right)\binom{0}{1}=a \\
& \tilde{c}_{2}=v_{2}-\left\langle v_{2}, v_{1}\right\rangle e_{1} \\
& =\binom{0}{1}-a\binom{1}{0}=\binom{-a}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\tilde{\mathbb{B}}_{2}, \widetilde{\mathbb{G}}_{2}\right\rangle=\left(\begin{array}{ll}
-a & 1
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right)\binom{-a}{1} \quad \mathbb{E}_{2} \perp \mathbb{G}_{1} \\
& =\left[0,1-a^{2}\right]\binom{-a}{i}=1-a^{2}(>0) \\
& e_{2}:=\frac{1}{\sqrt{1-a^{2}}} \tilde{C}_{2}=\frac{1}{\sqrt{1-a^{2}}}\binom{-a}{1} \\
& |a|<1 \\
& \cdot\left[\begin{array}{ll}
\Theta_{1} & \Theta_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & \frac{-a}{\sqrt{1-h^{t}}} \\
0 & 1
\end{array}\right] \quad \begin{array}{c}
\text { arihogomal } \\
\text { basis of }
\end{array} \\
& \left(\mathbb{R}_{2}^{2}(>)\right.
\end{aligned}
$$

Another orthonormal basis $($ cal $<1) a=\cos \theta$

$$
\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
\sec \frac{\theta}{2} & -\csc \frac{\theta}{2} \\
\sec \frac{\theta}{2} & \csc \frac{\theta}{2}
\end{array}\right] \quad(\theta \in(0, \pi))
$$

$$
\begin{aligned}
& {\left[Q_{1}, Q_{2}\right]=\left[\begin{array}{cc}
1 & -a / \sqrt{1-r^{2}} \\
0 & 1 / \sqrt{1-a^{2}}
\end{array}\right]} \\
& \omega^{1}(x):=\langle e, x\rangle=(1,0)\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right)\binom{x}{y} \\
& =\frac{(1, a)}{\hat{\omega}^{\prime}}\binom{x}{y} \\
& x=\binom{1}{4} \\
& \left.\omega^{2}(x) \cdot=\left\langle\theta_{2}, x\right\rangle=\frac{1}{\sqrt{1-a^{0}}}(-a .1)\left(\begin{array}{cc}
1 & a \\
a & 0
\end{array}\right)^{-1}\right) \\
& =\frac{1}{\sqrt{1-a^{2}}}\left(0,1-a^{2}\right)\binom{x}{y}=\frac{\left(0, \sqrt{1-a^{2}}\right)}{\hat{\omega}^{2}}\binom{n}{y}
\end{aligned}
$$

Exercise 1-2

Problem (Ex. 1-2)

Let \mathbb{L}^{3} be the 3-dimensional Lorentz-Minkowski vector space, and fix $\hat{\boldsymbol{x}} \in \mathbb{L}^{3}$ with $\langle\hat{\boldsymbol{x}}, \boldsymbol{x}\rangle_{L}=-1$. Take the "orthogonal complement"

$$
W:=\hat{\boldsymbol{x}}^{\perp}=\left\{\hat{\boldsymbol{y}} \in \mathbb{L}^{3} ;\langle\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}\rangle\right\} \boldsymbol{\omega}
$$

Show that W is a 2-dimensional linear subspace of \mathbb{L}^{3}.

- Show that the restriction of \langle,\rangle_{L} to $W \times W$ is a (positive definite) inner product of W.

$$
\begin{aligned}
& {\left[3=\left(R^{3},<,\right\rangle_{L}\right) \quad\langle x, y\rangle_{L}=x \theta q^{0} y^{0}+x y^{\prime} y^{1}+x^{2} y^{2}} \\
& x=\left(\begin{array}{l}
x^{\prime} \\
x^{\prime} \\
x^{\prime}
\end{array}\right) \quad y=\left(\begin{array}{l}
y^{0} \\
y^{\prime} \\
y^{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& W=x^{\perp}=\left\{y \in L^{3} ;\langle x, y\rangle_{L}=0\right\}
\end{aligned}
$$

- $W \subset \mathbb{L}^{3} \quad 2$-dim livear cubep
- $\left.\langle,\rangle_{L}\right|_{W \times W}$ is positive dof.

$$
W=x^{L}=\left\{y \in \mathbb{L}^{3} ;\langle x, y\rangle_{L}=0\right\} \subset \mathbb{L}^{3}
$$

- Consider a map: $\alpha:[\beta ; y \longmapsto \alpha(y]$
d: luear

$$
:=\langle x, y\rangle \in \mathbb{R}
$$

$W=\operatorname{Kor} \alpha \subset \mathbb{L}^{3}:$ a linew subpree.

$$
\mathbb{R} \rightarrow I_{m \alpha} \rightarrow-1 \because \alpha(\theta)=\left\langle\alpha, \theta_{L}\right\rangle_{L}
$$

lieer

$$
I_{m} \alpha=\mathbb{R}
$$

$$
\operatorname{din} W=\operatorname{den} L^{3}-\operatorname{din} \operatorname{In} \alpha=3-1=2
$$

Proposition

Let $\mathbb{L} x+1$ be the n-dimensional Lorentz-Minkowski vector space, and fix $\boldsymbol{x} \in \mathbb{L}^{n+1}$ with $\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=-1$. Take the "orthogonal complement"

$$
W:=\boldsymbol{x}^{\perp}=\left\{\boldsymbol{y} \in \mathbb{L}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{L}=0\right\}
$$

Then

- W is an n-dimensional linear subspace of \mathbb{L}^{n+1}.
- The restriction of \langle,\rangle_{L} to $W \times W$ is a positive definite inner product of W.
prof: scone
\rightarrow difintor of
Eypubolis space.

