Advanced Topics in Geometry E1 (MTH.B505)

Riemannian manifolds

Kotaro Yamada kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/04/25

Exercise 1-1

Problem (Ex. 1-1)

Let $\langle \; , \; \rangle$ be an inner product of \mathbb{R}^2 defined by

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^T A \boldsymbol{y} \qquad A = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix},$$

where a is a real number with |a| < 1.

- ullet Find an orthonormal basis $[oldsymbol{e}_1,oldsymbol{e}_2]$ with respect to $\langle\;,\;
 angle$.
- Find row vectors $\hat{\omega}^j$ (j=1,2) such that the dual basis $[\omega^j]$ of $[e_j]$ is expressed as

$$\omega^j(\boldsymbol{x}) = \hat{\omega}^j \boldsymbol{x} \qquad (j = 1, 2)$$

Exercise 1-2

Problem (Ex. 1-2)

Let \mathbb{L}^3 be the 3-dimensional Lorentz-Minkowski vector space, and fix $\hat{x} \in \mathbb{L}^3$ with $\langle \hat{x}, \hat{x} \rangle_L = -1$. Take the "orthogonal complement"

$$W := \hat{\boldsymbol{x}}^{\perp} = \{\hat{\boldsymbol{y}} \in \mathbb{L}^3 \, ; \, \langle \hat{\boldsymbol{x}}, \hat{\boldsymbol{y}} \rangle \}.$$

- Show that W is a 2-dimensional linear subspace of \mathbb{L}^3 .
- Show that the restriction of $\langle \ , \ \rangle_L$ to $W\times W$ is a (positive definite) inner product of W .

Proposition

Let \mathbb{L}^{n+1} be the n-dimensional Lorentz-Minkowski vector space, and fix $x \in \mathbb{L}^{n+1}$ with $\langle x, x \rangle_L = -1$. Take the "orthogonal complement"

$$W := \boldsymbol{x}^{\perp} = \{ \boldsymbol{y} \in \mathbb{L}^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{y} \rangle_L = 0 \}.$$

Then

- W is an n-dimensional linear subspace of \mathbb{L}^{n+1} .
- The restriction of $\langle \; , \; \rangle_L$ to $W \times W$ is a positive definite inner product of W .