Advanced Topics in Geometry E1 (MTH.B505)

Riemannian manifolds

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/04/25

Exercise 1-1

Problem (Ex. 1-1)

Let \langle,$\rangle be an inner product of \mathbb{R}^{2}$ defined by

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=\boldsymbol{x}^{T} A \boldsymbol{y} \quad A=\left(\begin{array}{cc}
1 & a \\
a & 1
\end{array}\right),
$$

where a is a real number with $|a|<1$.

- Find an orthonormal basis $\left[\boldsymbol{e}_{1}, e_{2}\right]$ with respect to \langle,$\rangle .$
- Find row vectors $\hat{\omega}^{j}(j=1,2)$ such that the dual basis $\left[\omega^{j}\right]$ of $\left[\boldsymbol{e}_{j}\right]$ is expressed as

$$
\omega^{j}(\boldsymbol{x})=\hat{\omega}^{j} \boldsymbol{x} \quad(j=1,2)
$$

Exercise 1-2

Problem (Ex. 1-2)

Let \mathbb{L}^{3} be the 3-dimensional Lorentz-Minkowski vector space, and fix $\hat{\boldsymbol{x}} \in \mathbb{L}^{3}$ with $\langle\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}}\rangle_{L}=-1$. Take the "orthogonal complement"

$$
W:=\hat{\boldsymbol{x}}^{\perp}=\left\{\hat{\boldsymbol{y}} \in \mathbb{L}^{3} ;\langle\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}\rangle\right\} .
$$

- Show that W is a 2-dimensional linear subspace of \mathbb{L}^{3}.
- Show that the restriction of \langle,\rangle_{L} to $W \times W$ is a (positive definite) inner product of W.

Proposition

Let \mathbb{L}^{n+1} be the n-dimensional Lorentz-Minkowski vector space, and fix $\boldsymbol{x} \in \mathbb{L}^{n+1}$ with $\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=-1$. Take the "orthogonal complement"

$$
W:=\boldsymbol{x}^{\perp}=\left\{\boldsymbol{y} \in \mathbb{L}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{L}=0\right\} .
$$

Then

- W is an n-dimensional linear subspace of \mathbb{L}^{n+1}.
- The restriction of \langle,\rangle_{L} to $W \times W$ is a positive definite inner product of W.

