Advanced Topics in Geometry E1 (MTH.B505)

Riemannian manifolds

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology
2023/04/25

A smooth manifold M is

- - a topological space (with appropiate properties)
- a family of local coordinate systems (charts)
- smooth coordinate change

Example (The n-dimensional affine space) forget the orifice
$\left.\mathbb{R}^{n}\right)=\left\{\left(x^{1}, \ldots, x^{n}\right)^{T} ; x^{j} \in \mathbb{R}, j=1,2, \ldots, n\right\}$

- compatibility coordinate Change: C^{∞}

Manifolds—submanifolds of \mathbb{R}^{n}

Fact (Implicit Function Theorem)

- $\mathcal{F} \mathbb{R}^{n+r} \rightarrow \mathbb{R}^{r}$: smooth $\mathbb{C}^{\boldsymbol{\infty}}$
(M) $=\boldsymbol{F}^{-1}(\mathbf{0})=\left\{p \in \mathbb{R}^{n+r} ; \boldsymbol{F}(p)=\mathbf{0}\right\} \neq \emptyset$
\rightarrow rank (1) $=$ on M
$\Rightarrow M$ is an n-almensiontal submanifold of \mathbb{R}^{n+r}

Example: spheres

$$
\begin{aligned}
& \rightarrow n \geq 1 \quad \text { F: } \mathbb{R}^{n+1} \longrightarrow \mathbb{R} \\
& \rightarrow F(x):=F\left(x^{0}, \ldots, x^{n}\right)=\left(\sum_{j=0}^{n} D\left(\underset{\sim}{\left(x^{j}\right)^{2}}\right)-\frac{1}{k}=\right. \\
& \langle x, x\rangle-\frac{1}{k^{\prime}} \quad \sum_{j=0}\left(n-d l_{0}\right) \\
& s^{n}(k)=F^{-1}(003) \in \mathbb{R}^{n+1}-\text { spbmawt } l d d \\
& d F=\left(\frac{\partial F}{x}, \cdots, \frac{\partial E}{\partial x}\right)=\left(2 x^{0}, 2 x 1, \cdots, 2 x^{n}\right) \\
& =2 x ; r+0 \notin F^{-1}(0) \\
& \text { roned } d F=1 \Leftrightarrow x+0 ; ~(i) F(\theta)=-\frac{1}{R} \\
& \text { \# } 0
\end{aligned}
$$

$$
S^{n}(p):=\left\{x \in \mathbb{R}^{n+1} ;\langle x, x\rangle-\frac{1}{p}=0\right\}
$$

- n-d ain sphere (of radius $\frac{1}{\sqrt{R}}$)

$$
n=y^{2}
$$

$$
k=1
$$

Smooth functions

$\mathcal{F}(M)$ an algebra consists of smooth functions on M.
$\mathcal{F}\left(\mathbb{R}^{n}\right)$ is the set of smooth functions of n-variables.

- For an n-dimensional submanifold $M \in \mathbb{R}^{N}$, an element of $\mathcal{F}(M)$ is a function $f: M \rightarrow \mathbb{R}$ such that $f \circ \varphi$ is of class C^{∞} for any smooth function $\varphi: \mathbb{R}^{n} \rightarrow M$.
- $f(\mu)=\left\{f: M \stackrel{c^{\prime \prime}}{\rightarrow} R\right\}$

$$
\left(\begin{array}{ll}
f+g & \text { 捊 }
\end{array}\right)
$$

Tangent spaces

$T_{p} M$: the tangent space of a manifold M at $p \in M$.

- the set of "velocity vectors" of curves on M passing through p.
- the set of "directional derivatives" at p.

Example
 $\forall x \in \mathbb{R}^{n}$

$T_{\boldsymbol{x}} \mathbb{R}^{n}=\mathbb{R}^{n}$.
vector spar

The tangent space of the sphere
Nut)$\left\{\langle x, x\rangle=\frac{1}{k}\right\} \quad c \mathbb{D}^{n+1}$
(t) For a curve $\gamma(t)$ on $S^{n}(x) \quad T\left(x S^{n}(x)\right.$
with $r(0)=0$.

$$
\Rightarrow \frac{d \gamma}{d t}(D)^{\perp} x
$$

($-\frac{d}{d}\langle\gamma(t), \gamma(t)\rangle=\frac{1}{R}$

$\left\langle\dot{\gamma}(0), \gamma^{x}(\theta)\right\rangle=0$

Tangent bundles
 TM F
 $T M=\underline{\cup_{p \in M} T_{p} M} ; \pi: T M \rightarrow M$: the projection
 "vector bundle of rank $n:=\operatorname{dim} M$ " over M. कu

> a $2 n$-dimensional manifold.

Example

$$
T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}
$$

The tangent bundle of the sphere

$$
\begin{aligned}
& \begin{array}{l}
\text { Example } \\
T S^{n}(k)=\mathbb{N}=\left\{(x, v) \in S^{n}(k) \times \mathbb{R}^{\boldsymbol{d}} ;\langle\boldsymbol{v , x \rangle}=0\}<\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}\right. \\
S^{n}(\mathbb{k})
\end{array} \\
& \left(\begin{array}{c}
2 n \text {-dimensions } \\
\text { swomanifoed } \\
\text { of } \mathbb{R}^{2(n+y)}
\end{array}\right)
\end{aligned}
$$

Vector fields

Vector fields on \mathbb{R}^{n} and $S^{n}(k)$

> $\mathfrak{X}\left(\mathbb{R}^{n}\right)=\left\{X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ; C^{\infty}\right\}$

- $\mathfrak{X}\left(S^{n}(k)\right)=\left\{X=(\boldsymbol{x}, \boldsymbol{v}): S^{n}(k) \ni \boldsymbol{x} \mapsto(\boldsymbol{x}, \boldsymbol{v}) \in\right.$ $\left.\mathbb{R}^{2 n} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle=0\right\}$

Riemannian manifolds $=$ mauifeld wusih Rem．motive

Definition
 $$
y \text { - by }
$$

A Riemannian metrify g on an n－manifold M is a correspondence $p \mapsto g_{p}$ of p to an inner product g_{p} of $T_{p} M$ ，which satisfies the smoothness condition，that is，

$$
\text { ᄂ } g(X, Y): M \equiv P \rightarrow(9)\left(X_{p}, Y_{p}\right) \in \mathbb{R}
$$

is a smooth function for each pair of sooth vector fields $X Y$ ．
Example
$\mathbb{E}^{n}:=\left(\mathbb{R}^{n}\langle\rangle,\right)$ is a Riemannian manifold，called the Euclidean
n－space．
Cemowien inion purdue of $\mathbb{R}^{n}=T Q_{i}^{n}$

Riemannian submanifold

$M \subset \mathbb{R}^{n+r}:$ a submanifold.
$-T_{p} M \subset T_{p} \mathbb{R}^{n+r}$.

- The restriction of \langle,$\rangle to T_{p} M \times T_{p} M$ is an inner product. $\Rightarrow\langle$,$\rangle induces a Riemannian metric on M$, called the induced metric.
Example $\neq \mathbb{E}^{n+1}$
$S^{n}(k) \mathbb{R}^{n+1}$ is a Riemannian manifold with the induced metric from $\mathbb{R}^{n+\mathrm{T}}$, called the sphere of constant curvature k.

$$
T_{x} S^{n}(\mathbb{R})=x^{1} \subset \mathbb{R}^{n+1}
$$

1) Riemamian metric

The hyperbolic space

Recall: the Lorentz-Minkowski vector space
$\mathbb{L}^{n+1}=\left(\mathbb{R}^{n+1},\langle,\rangle_{L}\right)$.
$\boldsymbol{\nabla}\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{L}:=-x^{0} y^{0}+\sum_{j=1}^{n} x^{j} y^{j}:$

$$
\left(\boldsymbol{x}=\left(x^{0}, x^{1}, \ldots, x^{n}\right)^{T}, \boldsymbol{y}=\left(y^{0}, y^{1}, \ldots, y^{n}\right)^{T}\right)
$$

The canonical Lorentzian "inner product".
For $k<0$,

$$
H^{n}(k):=\left\{\boldsymbol{x}=\left(x^{0}, \ldots, \boldsymbol{y}^{n}\right)^{T} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=1 / k, x^{0}>0\right\}
$$

- $T_{\boldsymbol{x}} H^{n}(k)=\left\{\boldsymbol{v} \in \mathbb{L}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle 0\right\}$

Fact

The restriction of \langle,\rangle_{L} to $T_{\boldsymbol{x}} H^{n}(k) \times T_{\boldsymbol{x}} H^{n}(k)$ is a positive definite inner product, which induces the Riemannian metric \langle,\rangle_{L} to $H^{n}(k)$. The Riemannian manifold $\left(H^{n}(k),\langle,\rangle_{L}\right)$ is called the

$$
\begin{aligned}
& k<0 \quad H^{n}(k)=\left\{x \in \mathbb{L}^{n-1} ;\langle x, x\}_{1}=\frac{1}{k} x^{0}>0\right\} \\
& -\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2} \rightarrow \cdots+\left(x^{n}\right)^{2}=\frac{1}{p}<0
\end{aligned}
$$

$$
\begin{aligned}
& H^{n}(k)=\left\{x=\left(x^{0}, \cdots, x^{n}\right) \in L^{n+1},\right. \\
& \left.-\left(x^{1}\right)^{2}+\left(\cos ^{2}\right)^{2}+\therefore+\left(x^{n}\right)^{2}=\frac{1}{R}, x^{0}>0\right\} \\
& \langle x, x\rangle_{L}=\frac{1}{R}, T_{x} H^{n}(k)=x^{\perp} \\
& \langle x, u\rangle_{L}=\frac{1}{k}<0 \\
& \left.\Rightarrow\langle,\rangle_{L}\right|_{\left.T_{\text {alt }}{ }^{n}(t) ;\right)}: \text { pesitive afinito }
\end{aligned}
$$

L,\rangle_{L} : induces a Reemannian metric of H_{i+1}^{n} the Hyperbalice space of constant curvative $k<0$

Exercise 2-1

Problem (Ex. 2-1)

Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set
$f(D)(u, v) \sqrt{\frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in \mathbb{L}^{3} .}$
\downarrow For each $(u, v) \in D$,

- Show that f is a bijection from D to H
- Compute $\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{u}\right\rangle_{\mathbf{L}}\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{v}\right\rangle_{\boldsymbol{L}}$ and $\left\langle\boldsymbol{f}_{v}, \boldsymbol{f}_{v}\right\rangle_{\boldsymbol{L}}$.
- For each $(u, v) \in \bar{D}$, find an orthonormal basis $\left[\boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$ of $T_{\boldsymbol{x}} H^{3}(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u, v)$.

Exercise 2-2

Problem (Ex. 2-2)

Fix an $(n+1) \times(n+1)$-orthogonal matrix A and set

$$
\varphi: S^{n}(k) \ni \rightarrow \mapsto \in \mathbb{R}^{n+1},
$$

where k is a positive number. Fix $x \in S^{n}(k)$ and take a smooth curve $\gamma(t)$ on $S^{n}(k)$ such that $\gamma(0)=x$ and set $v:=\dot{\gamma}(0) \in T_{\boldsymbol{x}} S^{n}(k)$.

- Show that φ induces a bijection from $S^{n}(k)$ into $S^{n}(k)$.
- Show tha $\varphi_{*} v:=\left.\frac{d}{d t}\right|_{t=0} \varphi \circ \gamma=A v$.
- Verify that $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=\left\langle\varphi_{*} v, \varphi_{*} v\right\rangle$.

