Advanced Topics in Geometry E1 (MTH.B505)

Riemannian manifolds

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/04/25

Manifolds

A smooth manifold M is

- a topological space
- a family of local coordinate systems (charts)
- smooth coordinate change

Example (The n-dimensional affine space)

$\mathbb{R}^{n}:=\left\{\left(x^{1}, \ldots, x^{n}\right)^{T} ; x^{j} \in \mathbb{R}, j=1,2, \ldots, n\right\}$

Manifolds—submanifolds of \mathbb{R}^{n}

Fact (Implicit Function Theorem)

- $\boldsymbol{F}: \mathbb{R}^{n+r} \rightarrow \mathbb{R}^{r}$: smooth
- $M:=\boldsymbol{F}^{-1}(\mathbf{0})=\left\{p \in \mathbb{R}^{n+r} ; \boldsymbol{F}(p)=\mathbf{0}\right\} \neq \emptyset$
- $\operatorname{rank} d \boldsymbol{F}=r$ on M
$\Rightarrow M$ is an n-dimensional submanifold of \mathbb{R}^{n+r}

Example: spheres

- $n \geqq 1$
- $k>0$
- $F(\boldsymbol{x}):=F\left(x^{0}, \ldots, x^{n}\right)=\left(\sum j=0^{n}\left(x^{j}\right)^{2}\right)-\frac{1}{k}=\langle\boldsymbol{x}, \boldsymbol{x}\rangle-\frac{1}{k}$.

$$
S^{n}(k)=F^{-1}(\{0\}) \subset \mathbb{R}^{n+1}
$$

Smooth functions

$\mathcal{F}(M)$: an algebra consists of smooth functions on M.

- $\mathcal{F}\left(\mathbb{R}^{n}\right)$ is the set of smooth functions of n-variables.
- For an n-dimensional submanifold $M \in \mathbb{R}^{N}$, an element of $\mathcal{F}(M)$ is a function $f: M \rightarrow \mathbb{R}$ such that $f \circ \varphi$ is of class C^{∞} for any smooth function $\varphi: \mathbb{R}^{n} \rightarrow M$.

Tangent spaces

$T_{p} M$: the tangent space of a manifold M at $p \in M$.

- the set of "velocity vectors" of curves on M passing through p.
- the set of "directional derivatives" at p.

Example
 $T \boldsymbol{x} \mathbb{R}^{n}=\mathbb{R}^{n}$.

The tangent space of the sphere

Example
$T_{\boldsymbol{x}} S^{n}(k)=\boldsymbol{x}^{\perp}=\left\{\boldsymbol{v} \in \mathbb{R}^{n} ;\langle\boldsymbol{v}, \boldsymbol{x}\rangle=0\right\} \in \mathbb{R}^{n+1}$

Tangent bundles

$T M=\cup_{p \in M} T_{p} M ; \pi: T M \rightarrow M$: the projection

- "vector bundle of rank $n:=\operatorname{dim} M$ " over M.
- a $2 n$-dimensional manifold.

Example

$T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$.

The tangent bundle of the sphere

Example
 $T S^{n}(k)=\boldsymbol{x}^{\perp}=\left\{(\boldsymbol{x}, \boldsymbol{v}) \in S^{n}(k) \times \mathbb{R}^{n} ;\langle\boldsymbol{v}, \boldsymbol{x}\rangle=0\right\} \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$

Vector fields

A vector field X of a manifold M is
a smooth map $X: M \rightarrow T M$ such that $\pi \circ X=\mathrm{id}$.
$\mathfrak{X}(M)=$ the set of vector fields on M

- $\mathfrak{X}(M)$ is a vector space.
- $\mathfrak{X}(M)$ is an $\mathcal{F}(M)$-module

Vector fields on \mathbb{R}^{n} and $S^{n}(k)$

- $\mathfrak{X}\left(\mathbb{R}^{n}\right)=\left\{X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ; C^{\infty}\right\}$
- $\mathfrak{X}\left(S^{n}(k)\right)=\left\{X=(\boldsymbol{x}, \boldsymbol{v}): S^{n}(k) \ni \boldsymbol{x} \mapsto(\boldsymbol{x}, \boldsymbol{v}) \in \mathbb{R}^{2 n} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle=0\right\}$

Riemannian manifolds

Definition

A Riemannian metric g on an n-manifold M is a correspondence $p \mapsto g_{p}$ of p to an inner product g_{p} of $T_{p} M$, which satisfies the smoothness condition, that is,

$$
g(X, Y): M \ni p \mapsto g_{p}\left(X_{p}, y_{p}\right) \in \mathbb{R}
$$

is a smooth function for each pair of sooth vector fields (X, Y).

> Example $\mathbb{E}^{n}:=\left(\mathbb{R}^{n},\langle\rangle,\right)$ is a Riemannian manifold, called the Euclidean n-space.

Riemannian submanifold

$M \subset \mathbb{R}^{n+r}:$ a submanifold.

- $T_{p} M \subset T_{p} \mathbb{R}^{n+r}$.
- The restriction of \langle,$\rangle to T_{p} M \times T_{p} M$ is an inner product.
$\Rightarrow\langle$,$\rangle induces a Riemannian metric on M$, called the induced metric.

Example

$S^{n}(k) \subset \mathbb{R}^{n+1}$ is a Riemannian manifold with the induced metric from \mathbb{R}^{n+1}, called the sphere of constant curvature k.

The hyperbolic space

Recall: the Lorentz-Minkowski vector space $\mathbb{L}^{n+1}=\left(\mathbb{R}^{n+1},\langle,\rangle_{L}\right)$.

- $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{L}:=-x^{0} y^{0}+\sum_{j=1}^{n} x^{j} y^{j}:$

$$
\left(\boldsymbol{x}=\left(x^{0}, x^{1}, \ldots, x^{n}\right)^{T}, \boldsymbol{y}=\left(y^{0}, y^{1}, \ldots, y^{n}\right)^{T}\right)
$$

The canonical Lorentzian "inner product".
For $k<0$,

$$
H^{n}(k):=\left\{\boldsymbol{x}=\left(x^{0}, \ldots,,^{n_{1}}\right)^{T} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{L}=1 / k, x^{0}>0\right\}
$$

- $T \boldsymbol{x} H^{n}(k)=\left\{\boldsymbol{v} \in \mathbb{L}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle 0\right\}$

Fact

The restriction of \langle,\rangle_{L} to $T_{\boldsymbol{x}} H^{n}(k) \times T_{\boldsymbol{x}} H^{n}(k)$ is a positive definite inner product, which induces the Riemannian metric \langle,\rangle_{L} to $H^{n}(k)$. The Riemannian manifold $\left(H^{n}(k),\langle,\rangle_{L}\right)$ is called the hyperbolic n-space of constant curvature k.

Exercise 2-1

Problem (Ex. 2-1)

Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
\boldsymbol{f}: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in \mathbb{L}^{3}
$$

- For each $(u, v) \in D$,
- Show that \boldsymbol{f} is a bijection from D to $H^{3}(-1)$.
- Compute $\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{u}\right\rangle,\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{v}\right\rangle$ and $\left\langle\boldsymbol{f}_{v}, \boldsymbol{f}_{v}\right\rangle$.
- For each $(u, v) \in D$, find an orthonormal basis $\left[\boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$ of $T_{\boldsymbol{x}} H^{3}(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u, v)$.

Exercise 2-2

Problem (Ex. 2-2)

Fix an $(n+1) \times(n+1)$-orthogonal matrix A and set

$$
\boldsymbol{\varphi}: S^{n}(k) \ni \boldsymbol{x} \mapsto A \boldsymbol{x} \in \mathbb{R}^{n+1}
$$

where k is a positive number. Fix $\boldsymbol{x} \in S^{n}(k)$ and take a smooth curve $\gamma(t)$ on $S^{n}(k)$ such that $\gamma(0)=\boldsymbol{x}$ and set $\boldsymbol{v}:=\dot{\gamma}(0) \in T_{\boldsymbol{x}} S^{n}(k)$.

- Show that φ induces a bijection from $S^{n}(k)$ into $S^{n}(k)$.
- Show that $\boldsymbol{\varphi}_{*} \boldsymbol{v}:=\left.\frac{d}{d t}\right|_{t=0} \varphi \circ \gamma=A \boldsymbol{v}$.
- Verify that $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=\left\langle\boldsymbol{\varphi}_{*} \boldsymbol{v}, \boldsymbol{\varphi}_{*} \boldsymbol{v}\right\rangle$.

