Advanced Topics in Geometry E1 (MTH.B505)

Riemannian manifolds

Kotaro Yamada kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/04/25

Manifolds

A smooth manifold M is

- a topological space
- a family of local coordinate systems (charts)
- smooth coordinate change

Example (The *n*-dimensional affine space)

$$\mathbb{R}^n := \{(x^1, \dots, x^n)^T ; x^j \in \mathbb{R}, j = 1, 2, \dots, n\}$$

Manifolds—submanifolds of \mathbb{R}^n

Fact (Implicit Function Theorem)

- $F: \mathbb{R}^{n+r} \to \mathbb{R}^r$: smooth
- $M := \mathbf{F}^{-1}(\mathbf{0}) = \{ p \in \mathbb{R}^{n+r} ; \mathbf{F}(p) = \mathbf{0} \} \neq \emptyset$
- rank $d\mathbf{F} = r$ on M

 $\Rightarrow M$ is an n-dimensional submanifold of \mathbb{R}^{n+r}

Example: spheres

- $n \ge 1$
- k > 0

•
$$F(\mathbf{x}) := F(x^0, \dots, x^n) = \left(\sum j = 0^n (x^j)^2\right) - \frac{1}{k} = \langle \mathbf{x}, \mathbf{x} \rangle - \frac{1}{k}.$$

 $S^n(k) = F^{-1}(\{0\}) \subset \mathbb{R}^{n+1}$

Smooth functions

 $\mathcal{F}(M)$: an algebra consists of smooth functions on M.

- $\mathcal{F}(\mathbb{R}^n)$ is the set of smooth functions of n-variables.
- For an n-dimensional submanifold $M \in \mathbb{R}^N$, an element of $\mathcal{F}(M)$ is a function $f \colon M \to \mathbb{R}$ such that $f \circ \varphi$ is of class C^∞ for any smooth function $\varphi \colon \mathbb{R}^n \to M$.

Tangent spaces

 T_pM : the tangent space of a manifold M at $p \in M$.

- \bullet the set of "velocity vectors" of curves on M passing through p.
- ullet the set of "directional derivatives" at p.

Example

 $T_{\mathbf{x}}\mathbb{R}^n = \mathbb{R}^n.$

The tangent space of the sphere

Example

$$T_{\boldsymbol{x}}S^n(k) = \boldsymbol{x}^{\perp} = \{ \boldsymbol{v} \in \mathbb{R}^n ; \langle \boldsymbol{v}, \boldsymbol{x} \rangle = 0 \} \in \mathbb{R}^{n+1}$$

Tangent bundles

 $TM = \cup_{p \in M} T_pM$; $\pi \colon TM \to M$: the projection

- "vector bundle of rank $n := \dim M$ " over M.
- \bullet a 2n-dimensional manifold.

Example

 $T\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$.

The tangent bundle of the sphere

Example

$$TS^n(k) = \boldsymbol{x}^{\perp} = \{(\boldsymbol{x}, \boldsymbol{v}) \in S^n(k) \times \mathbb{R}^n ; \langle \boldsymbol{v}, \boldsymbol{x} \rangle = 0\} \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$$

Vector fields

A vector field X of a manifold M is a smooth map $X\colon M\to TM$ such that $\pi\circ X=\mathrm{id}.$ $\mathfrak{X}(M)=$ the set of vector fields on M

- \bullet $\mathfrak{X}(M)$ is a vector space.
- ullet $\mathfrak{X}(M)$ is an $\mathcal{F}(M)$ -module

Vector fields on \mathbb{R}^n and $S^n(k)$

- $\bullet \ \mathfrak{X}(\mathbb{R}^n) = \{X \colon \mathbb{R}^n \to \mathbb{R}^n; C^{\infty}\}\$
- $\mathfrak{X}(S^n(k)) = \{X = (\boldsymbol{x}, \boldsymbol{v}) \colon S^n(k) \ni \boldsymbol{x} \mapsto (\boldsymbol{x}, \boldsymbol{v}) \in \mathbb{R}^{2n}; \langle \boldsymbol{x}, \boldsymbol{v} \rangle = 0\}$

Riemannian manifolds

Definition

A Riemannian metric g on an n-manifold M is a correspondence $p\mapsto g_p$ of p to an inner product g_p of T_pM , which satisfies the smoothness condition, that is,

$$g(X,Y):M\ni p\mapsto g_p(X_p,y_p)\in\mathbb{R}$$

is a smooth function for each pair of sooth vector fields (X,Y).

Example

 $\mathbb{E}^n := (\mathbb{R}^n, \langle \ , \ \rangle)$ is a Riemannian manifold, called the Euclidean n-space.

Riemannian submanifold

 $M \subset \mathbb{R}^{n+r}$: a submanifold.

- $T_pM \subset T_p\mathbb{R}^{n+r}$.
- The restriction of $\langle \ , \ \rangle$ to $T_pM \times T_pM$ is an inner product.
- \Rightarrow $\langle \ , \ \rangle$ induces a Riemannian metric on M, called the induced metric.

Example

 $S^n(k) \subset \mathbb{R}^{n+1}$ is a Riemannian manifold with the induced metric from \mathbb{R}^{n+1} , called the sphere of constant curvature k.

The hyperbolic space

Recall: the Lorentz-Minkowski vector space $\mathbb{L}^{n+1}=(\mathbb{R}^{n+1},\langle\ ,\ \rangle_L).$

$$\begin{array}{l} \bullet \ \langle \boldsymbol{x}, \boldsymbol{y} \rangle_L := -x^0 y^0 + \sum_{j=1}^n x^j y^j : \\ & (\boldsymbol{x} = (x^0, x^1, \dots, x^n)^T, \ \boldsymbol{y} = (y^0, y^1, \dots, y^n)^T). \end{array}$$

The canonical Lorentzian "inner product".

For k < 0,

$$H^{n}(k) := \{ \boldsymbol{x} = (x^{0}, \dots, {}^{n_{1}})^{T}; \langle \boldsymbol{x}, \boldsymbol{x} \rangle_{L} = 1/k, x^{0} > 0 \}$$

• $T_{\boldsymbol{x}}H^n(k) = \{ \boldsymbol{v} \in \mathbb{L}^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{v} \rangle 0 \}$

Fact

The restriction of $\langle \;,\; \rangle_L$ to $T_{\boldsymbol{x}}H^n(k) \times T_{\boldsymbol{x}}H^n(k)$ is a positive definite inner product, which induces the Riemannian metric $\langle \;,\; \rangle_L$ to $H^n(k)$. The Riemannian manifold $(H^n(k),\langle \;,\; \rangle_L)$ is called the <u>hyperbolic n-space of constant curvature k.</u>

Exercise 2-1

Problem (Ex. 2-1)

Let $D:=\{(u,v)\in\mathbb{R}^2\,;\,u^2+v^2<1\}$, and set

$$f: D \ni (u, v) \mapsto \frac{1}{1 - u^2 - v^2} (1 + u^2 + v^2, 2u, 2v) \in \mathbb{L}^3.$$

- For each $(u, v) \in D$,
- Show that f is a bijection from D to $H^3(-1)$.
- ullet Compute $\langle m{f}_u, m{f}_u
 angle$, $\langle m{f}_u, m{f}_v
 angle$ and $\langle m{f}_v, m{f}_v
 angle$.
- For each $(u,v) \in D$, find an orthonormal basis $[e_1(u,v),e_2(u,v)]$ of $T_{\boldsymbol{x}}H^3(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u,v)$.

Exercise 2-2

Problem (Ex. 2-2)

Fix an $(n+1) \times (n+1)$ -orthogonal matrix A and set

$$\varphi \colon S^n(k) \ni \boldsymbol{x} \mapsto A\boldsymbol{x} \in \mathbb{R}^{n+1},$$

where k is a positive number. Fix $x \in S^n(k)$ and take a smooth curve $\gamma(t)$ on $S^n(k)$ such that $\gamma(0) = x$ and set $v := \dot{\gamma}(0) \in T_x S^n(k)$.

- ullet Show that arphi induces a bijection from $S^n(k)$ into $S^n(k)$.
- Show that $\varphi_* v := \frac{d}{dt}\big|_{t=0} \varphi \circ \gamma = Av$.
- ullet Verify that $\langle oldsymbol{v}, oldsymbol{v}
 angle = \langle oldsymbol{arphi}_* oldsymbol{v}, oldsymbol{arphi}_* oldsymbol{v}
 angle.$