Advanced Topics in Geometry E1 (MTH.B505)

Pseudo Riemannian manifolds

Kotaro Yamada kotaro@math.titech.ac.jp http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/05/02

Exercise 2-1

Problem (Ex. 2-1) Let $D := \{(u, v) \in \mathbb{R}^2 ; u^2 + v^2 < 1\}$, and set $f: D \ni (u, v) \mapsto \frac{1}{1 - u^2 - v^2} (1 + u^2 + v^2, 2u, 2v) \in \mathbb{L}^3.$

For each $(u, v) \in D$,

- Show that f is a bijection from D to $H^3(-1)$.
- Compute $\langle \boldsymbol{f}_u, \boldsymbol{f}_u \rangle$, $\langle \boldsymbol{f}_u, \boldsymbol{f}_v \rangle$ and $\langle \boldsymbol{f}_v, \boldsymbol{f}_v \rangle$.
- For each $(u, v) \in D$, find an orthonormal basis $[e_1(u, v), e_2(u, v)]$ of $T_x H^3(-1)$, where x = f(u, v).

Exercise 2-1

$$f: D \ni (u, v) \mapsto \frac{1}{1 - u^2 - v^2} (1 + u^2 + v^2, 2u, 2v) \in \mathbb{L}^3.$$

Exercise 2-2

Problem (Ex. 2-2)

Fix an $(n+1) \times (n+1)$ -orthogonal matrix A and set

 $\boldsymbol{\varphi} \colon S^n(k) \ni \boldsymbol{x} \mapsto A\boldsymbol{x} \in \mathbb{R}^{n+1},$

where k is a positive number. Fix $x \in S^n(k)$ and take a smooth curve $\gamma(t)$ on $S^n(k)$ such that $\gamma(0) = x$ and set $v := \dot{\gamma}(0) \in T_x S^n(k)$.

• Show that φ induces a bijection from $S^n(k)$ into $S^n(k)$.

• Show that
$$arphi_* oldsymbol{v} := \left. rac{d}{dt} \right|_{t=0} oldsymbol{arphi} \circ \gamma = A oldsymbol{v}.$$

• Verify that
$$\langle m{v},m{v}
angle=\langlem{arphi}_*m{v},m{arphi}_*m{v}
angle.$$

Definition

Let (M,g) be a Riemannian manifold. A smooth map $\varphi\colon M\to M$ is an isometry if

$$g(X,Y) = g(\varphi_*X,\varphi_*Y)$$

holds for all tangent vectors X and Y of M.

Fact

Set of the isometries, called the <u>isometry group</u>, is a group with respect to composition of maps.

Fact

The isometry group of $S^n(k)$ contains the orthogonal group O(n+1).