- $H^{n}(k) C\left(L^{n+1}\right)$ the Loutit Mancowsti

Advanced Topics in Geometry E1 (MTH.B505)

Pseudo Riemannian manifolds

Tokyo Institute of Technology
2023/05/02

Non-degenerate bilinear form
$V: n$-dimensional vector space over \mathbb{R}.
\langle,$\rangle : a symmetric bilinear form$
Definition
\langle,$\rangle is non-degenerate ff$
« $\quad\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0 \quad$ for all $\boldsymbol{y} \in V \quad \Leftrightarrow \quad \boldsymbol{x}=\mathbf{0}$.
Fact
A positive definite symmetric bilinear form is non-degenerate.
(;) $\langle x, y\rangle=0$ for $\left.{ }^{\prime} y\right\rangle\langle x, x\rangle=0$

$$
\Rightarrow x=0
$$

positive deffurit

An inner product (in an extended sense) $=$
a non-degenerate symmetric bilinear form
Example $\quad(m \geq 0, r \geq 0 \quad m \sim r=n>0)$

$$
\begin{align*}
& x=\left(x, \cdots x^{n}\right)^{\top} \in \mathbb{R}^{n} \\
& y=\left(y^{1} \cdots y^{n}\right)^{T} \in \mathbb{R}^{n} \\
& \langle x, y\rangle=x^{\top}\left[\begin{array}{ccc}
-1 & -1 & 0 \\
& -1 & \\
0 & -1 \\
0 & & -1
\end{array}\right] y \tag{6}
\end{align*}
$$

\langle,$\rangle a symm. belinear form$

- \langle,$\rangle : non-degenerato$

$$
\begin{aligned}
& \text { (:) }\langle x, y\rangle=0 \text { for }{ }^{\prime} y \\
& \Rightarrow\left(x^{1},-, x^{n}\right)\left(\begin{array}{ccc}
-c_{1} & 0 \\
-1 & 0 \\
c^{\prime} & -1
\end{array}\right)\left(\begin{array}{c}
y^{\prime} \\
\vdots \\
y^{n}
\end{array}\right)=0^{\forall} y \\
& \Rightarrow \frac{\left(-x^{1},-x^{n}, x^{n-1}, \cdots x^{m}\right)}{\pi^{T}}\binom{y^{1}}{y_{m}}=0 \\
& \Rightarrow\left\langle\tilde{i}^{*}, y\right\rangle_{\text {Ewhem }}=0 \operatorname{Arv}^{\forall} y \\
& \Rightarrow \tilde{x}=0 \quad \Rightarrow x=0
\end{aligned}
$$

Pseudo Euclidean spaces

Example

$$
m \geqq 1 ; r \geqq 0 ; \quad m+V>0
$$

where

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=-\left(\sum_{j=1}^{r} x^{j} y^{j}\right)+\left(\sum_{l=r+1}^{m+1}\right.
$$

$\Rightarrow\langle$,$\rangle : a non-degenerate symmetric bilinear form$

1. $r=0$: the Euclidean space (positive definite)
2. $r=1$: the Lorentz-Minkowski space (indefinite)
3. $r=n=\operatorname{dim} V$: negative definite

Restriction of the inner product $\quad(V,\langle\rangle$,

$W \subset V:$ a subspace
$\left.\langle\rangle\right|_{,W \times W}$: the restriction of the inner product \langle,$\rangle . a symmetric$ bilinear form on W.
Lemma
If \langle,$\rangle is positive (negative) definite, so is its restriction$ $\left.\langle\rangle\right|_{,W \times W}$.

$$
\text { - }\langle x, x\rangle>0 \text { for } \forall x \in W \backslash\{0\}
$$

"neiter pos affinto sonar neg. definite" $=$ "indefinite"

$$
\begin{aligned}
& \varphi: \mathbb{E}_{1}^{3} \ni v \mapsto \varphi(v)=\langle\Delta, v\rangle \in R \cdot \operatorname{limear}
\end{aligned}
$$

Signature

\langle,$\rangle : an inner product on V(\operatorname{dim} V=n)$

Lemma
$m+r=n$.
(m, r) : the signature of $(V,\langle\rangle$,

$$
\mathbb{R}_{r}^{m+r}: \text { segnature }(m, r)
$$

Signature
$(V,\langle\rangle$,$) : of signature (m, r) ; m+r=n=\operatorname{dim} V$.
> $r=0$: a positive definite inner product
> $r=$ 1: a Lorentzian inner product
I one dion subspue on whish 〈.〉 is neg. affinity Foo on work $\left\langle_{t}\right\rangle$ is neg of

Pseudo Riemannian manifolds Peendo hiem. metric

Definition

A pseudo Riemannian metric g of signature m, r on a connected $n(=m+r)$-manifold M is a correspondence $p \mapsto g_{p}$ of p to an inner product g_{p} of signature (m, r) on $T_{p} M$, which satisfies the smoothness condition, that is,

$$
g(X, Y): M \ni p \mapsto g_{p}\left(X_{p}, Y_{p}\right) \in \mathbb{R}
$$

is a smooth function for each pair of sooth vector fields (X, Y). A connected n-manifold M endowed with a pseudo Riemannian metric g is called a pseudo Riemannian manifold

$$
\text { - } F(x):=\langle x, u\rangle-a \perp \quad M^{n}(a)=F^{-1}\left(\{0\}^{2}\right)
$$

$$
\cdot d F=0 \Leftrightarrow x=0
$$

$$
\text { - If } a \neq 0 \quad d F \neq 0 \text { on } M^{n}(a): M^{n}(a)
$$

$0<0$: each conneded companit: hyperbire sprus $M^{n}(a)$ caco

$$
\begin{aligned}
& \text { L.) } m T_{x} M^{\prime \prime}(a) \text { has signatue }(n-1 \text {. (1) }
\end{aligned}
$$

$\left(M^{n}(a),(\rangle.\right):$ a Lorention maus tal
n-dis de Sitter space of curvatuke $\frac{1}{a}$

Example

$$
M^{n}(a):=\left\{x \in \mathbb{R}^{\frac{n}{2}+1} ;\langle x, x\rangle=a\right\} .
$$

(a<0) $T_{x} M^{n}(a)=x^{\perp}$
\langle,$\rangle : of songnation (n-1,1)$
$\left(M^{n}(a),\langle\rangle,\right):$ Leractzia rfd
$\binom{n$-dinersinal anti de Setter space }{ of curvative $\frac{1}{a}}$

Exercise 3-1

Problem (Ex. 3-1)

Let $\mathrm{O}(2,1)$ be the set of 3×3-matrices satisfyjng

(D) Show that $a_{001} \geqq$ for $A=\left(a_{i j}\right)$. $\left.\langle x, y\rangle z a^{\top}\right\}$
(8) Show that the liner transformation induced $\& \forall \mathcal{O}(2,1)$ preserves the inner product \langle,$\rangle of \mathbb{E}_{1}^{3}$.
$\left(\mathrm{SO}_{+}(2,1):=\left\{A=\left(a_{i j}\right) \in \widetilde{\mathrm{O}(2,1) ; \operatorname{det} A=1, \mathrm{ann}_{1} \geq 1}\right.\right.$ induces a bijection from the hyperbolic spac $H^{2}(k)-\mathbb{E}_{1}^{3}$ to
itself, where $k<0$.

Exercise 3-2

Problem (Ex. 3-2)

Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
f: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in \mathbb{L}^{3}=\mathbb{E}_{1}^{3}
$$

and take an orthonormal basis $\left[e_{1}(u, v), e_{2}(u, v)\right]$ of $T_{\boldsymbol{x}} H^{3}(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u, v)$.

- Verify that, for each $(u, v) \in D,\left[e_{0}, e_{1}, e_{2}\right]$ is a basis of \mathbb{R}^{3}, where $e_{0}=f$.
- Express the derivatives $\left(e_{j}\right)_{\imath}$ and $\left.\left(e_{j}\right)_{2}\right)(j=0,1,2)$ as linear combinations of $\left[e_{0}, e_{1}, e_{2}\right]$.

