Advanced Topics in Geometry E1 (MTH.B505)

Pseudo Riemannian manifolds

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology
2023/05/02

Non-degenerate bilinear form

V : n-dimensional vector space over \mathbb{R}.
\langle,$\rangle : a symmetric bilinear form$

Definition

\langle,$\rangle is non-degenerate iff$

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0 \quad \text { for all } \boldsymbol{y} \in V \quad \Leftrightarrow \quad \boldsymbol{x}=\mathbf{0} \text {. }
$$

Fact

A positive definite symmetric bilinear form is non-degenerate.

Inner product

An inner product (in an extended sense) $=$
a non-degenerate symmetric bilinear form

Pseudo Euclidean spaces

Example

$n \geqq 1 ; r \geqq 0 ;$
$\mathbb{E}_{r}^{m+r}:=\left(\mathbb{R}^{m+r},\langle\rangle,\right), \quad$ where $\quad\langle\boldsymbol{x}, \boldsymbol{y}\rangle=-\left(\sum_{j=1}^{r} x^{j} y^{j}\right)+\left(\sum_{l=r+1}^{m+r} x^{l} y^{l}\right.$
$\Rightarrow\langle$,$\rangle : a non-degenerate symmetric bilinear form$
(1) $r=0$: the Euclidean space (positive definite)
(2) $r=1$: the Lorentz-Minkowski space (indefinite)
(3) $r=n=\operatorname{dim} V$: negative definite

Restriction of the inner product

$W \subset V:$ a subspae

$\left.\langle\rangle\right|_{,W \times W}$: the restriction of the inner product \langle,$\rangle . a symmetric bilinear$ form on W.

Lemma
If \langle,$\rangle is positive (negative) definite, so is its restriction \left.\langle\rangle\right|_{,W \times W}$.

Example

$W \subset \mathbb{R}^{3}=\mathbb{E}_{1}^{3}:$ a linear subspace given by

$$
W=\boldsymbol{x}^{\perp}=\{\boldsymbol{v} ;\langle\boldsymbol{x}, \boldsymbol{v}\rangle=0\} \quad\left(\boldsymbol{x}:=(1,1,0)^{T}\right)
$$

$\operatorname{dim} W=2$

$$
\boldsymbol{x}:=(1,1,0)^{T} \in W
$$

$\langle,\rangle_{W \times w}$: degenerates.

Signature

\langle,$\rangle : an inner product on V(\operatorname{dim} V=n)$
$m:=\max \left\{\operatorname{dim} W ; W \subset V:\right.$ a subspace, $\left.\langle\rangle\right|_{,W \times W}$ is positive definite $\}$, $r:=\max \left\{\operatorname{dim} W ; W \subset V:\right.$ a subspace, $\left.\langle\rangle\right|_{,W \times W}$ is negative definite $\}$.

Lemma

$m+r=n$.
(m, r) : the signature of $(V,\langle\rangle$,

Signature

$(V,\langle\rangle$,$) : of signature (m, r) ; m+r=n=\operatorname{dim} V$.

- $r=0$: a positive definite inner product
- $r=1$: a Lorentzian inner product
\mathbb{E}_{r}^{m+r}

Orthogonal Complement

\langle,$\rangle : an inner product of signature (m, r)$ on $V(m+r=n)$

Proposition

$\boldsymbol{x} \in V:\langle\boldsymbol{x}, \boldsymbol{x}\rangle<0$.

- $W:=\boldsymbol{x}^{\perp}$ is an $(n-1)$-dimensional subspace of V
- $\left.\langle\rangle\right|_{,W \times W}$ is of signature $(m, r-1)$.

Pseudo Riemannian manifolds

Definition

A pseudo Riemannian metric g of signature (m, r) on a connected n ($=m+r$)-manifold M is a correspondence $p \mapsto g_{p}$ of p to an inner product g_{p} of signature (m, r) on $T_{p} M$, which satisfies the smoothness condition, that is,

$$
g(X, Y): M \ni p \mapsto g_{p}\left(X_{p}, Y_{p}\right) \in \mathbb{R}
$$

is a smooth function for each pair of sooth vector fields (X, Y).
A connected n-manifold M endowed with a pseudo Riemannian metric g is called a pseudo Riemannian manifold

Example

$$
M^{n}(a):=\left\{\boldsymbol{x} \in \mathbb{E}_{1}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=a\right\} .
$$

Example

$$
M^{n}(a):=\left\{\boldsymbol{x} \in \mathbb{E}_{2}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=a\right\} .
$$

Exercise 3-1

Problem (Ex. 3-1)

Let $\mathrm{O}(2,1)$ be the set of 3×3-matrices satisfying

$$
\mathrm{O}(2,1):=\left\{A=\left(a_{i j}\right)_{i, j=0}^{2} ; A^{T} Y A=Y\right\} \quad\left(Y=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) .
$$

- Show that $|\operatorname{det} A|=1$ for $A \in \mathrm{O}(2,1)$.
- Show that $\left|a_{00}\right| \geqq 1$ for $A=\left(a_{i j}\right)$.
- Show that the liner transformation induced by $A \in \mathrm{O}(2,1)$ preserves the inner product \langle,$\rangle of \mathbb{E}_{1}^{3}$.
- $\operatorname{SO}_{+}(2,1):=\left\{A=\left(a_{i j}\right) \in \mathrm{O}(2,1) ; \operatorname{det} A=1, a_{00} \geqq 1\right\}$ induces a bijection from the hyperbolic space $H^{2}(k) \subset \mathbb{E}_{1}^{3}$ to itself, where $k<0$.

Exercise 3-2

Problem (Ex. 3-2)
Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
\boldsymbol{f}: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in \mathbb{L}^{3}=\mathbb{E}_{1}^{3}
$$

and take an orthonormal basis $\left[\boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$ of $T_{\boldsymbol{x}} H^{3}(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u, v)$.

- Verify that, for each $(u, v) \in D,\left[\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ is a basis of \mathbb{R}^{3}, where $e_{0}=f$.
- Express the derivatives $\left(\boldsymbol{e}_{j}\right)_{u}$ and $\left(\boldsymbol{e}_{j}\right)_{v}(j=0,1,2)$ as linear combinations of $\left[\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$.

