# Advanced Topics in Geometry E1 (MTH.B505) 

Riemannian connection for submanifolds

## Kotaro Yamada

kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology
2023/05/16

## Exercise 3-1

## Problem (Ex. 3-1)

Let 0 (29) be the set of $3 \times 3$-matrices satisfying id $\Rightarrow 0(3)$
$\mathrm{O}(2,1):=\left\{A=\left(\begin{array}{lll}a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22}\end{array}\right) \in \mathrm{M}_{3}(\mathbb{R}) ; A^{T} Y A=Y\right\}$
a group

"pseudo oringgomol group" if sep (2.1)

We know: $n$

$$
\text { - } O(S)=\left\{A \in M_{3}(R) ; A^{\top} A=I\right\}
$$

$\Rightarrow-O(3)$ is a group

$$
\begin{aligned}
& O(3) \subset M_{3}(\mathbb{R}) \cong \mathbb{R}^{i}: 3 \operatorname{dim}(\text { subamanifold } \\
& \text { compact } \\
& \text { aisconnected } \\
& \operatorname{det} A= \pm 1 \\
& \operatorname{det} I=l, \quad \operatorname{det}(-I)=-1 \\
& -_{S O(3)}=\{A \in O(3) ; \operatorname{det} A>0\} \text { ed } \phi
\end{aligned}
$$

## Exercise 3-1



## $\binom{A^{\top} Y A=Y}{d a Y=-1}$

$-($ Show that $)$ het $A \mid=1$ for $A \in O(2,1)$. $O(2,1)$ emsits of
 presernos the inner product $\langle,\rangle \circ \mathbb{E}_{1}^{3}$.

- SO $+(2,1):=\left\{A=\left(a_{i j}\right) \in \mathrm{O}(2,1) ;\right.$ det $\left.A=1, a_{00} \geq 1\right\}$ induces a bijection from the hyperbolic spac. $H^{2}(k) \subset \mathbb{P}_{1}^{3}$ to itself, where $k<0$.

$$
A=\left(\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{21}
\end{array}\right)=\left(a_{0} a_{1} @_{2}\right)
$$

$A \in O(2.1)>* \begin{array}{r}\left\langle a_{0}, a_{0}\right\rangle \\ =a_{0}^{\top} Y a_{0}=-1\end{array}$ of $\langle$, $\left\langle a_{i}, a_{j}\right\rangle=0$ ortherice

$$
\text { (7)- } \begin{aligned}
2 & a_{00}^{2}+a_{10}^{2}+a_{00}^{2}=-1 \\
& a_{00}^{2} \approx 1+a_{10}^{2}+a_{00}^{2} \geqq 1 \quad \therefore \mid \operatorname{cod} \geqq 1
\end{aligned}
$$

$$
\begin{aligned}
\text { an } \left.\begin{array}{rlr}
\langle 1 & \langle x, y\rangle & =x^{\top} Y y \\
& & Y=\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right) \\
& =x^{\top} Y y & \\
& =\langle a, y\rangle &
\end{array}\right)
\end{aligned}
$$

$\geq \mathrm{hm} \varphi: \mathbb{E}_{1}^{3} \rightarrow \mathbb{E}_{1}^{3} \cdot$ pretenves the numer

$$
\Rightarrow \varphi(x)=A x \quad A \in O(2,1)
$$

$H^{2}(k)=\left\{x \in \mathbb{E}^{3} ;\langle x, x\rangle=\frac{1}{k}\right.$, ,

SQ(a.1)


The lot conpenet of praterved by $x \rightarrow A x$

$$
\begin{aligned}
& A x=x_{0} a_{00}+x_{1} a_{01}+a_{2} a_{20}(>0) \\
& \left(\frac{-a_{10}^{0}+a_{01}^{2}+a_{01}^{2}=-1}{-x_{0}^{2}+x_{1}^{2}+x_{0}^{2}=\frac{1}{R}}\right)
\end{aligned}
$$

## Exercise 3-1

$\mathrm{O}(n, 1):=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ; A^{T} Y A=Y\right\}, \quad Y=\operatorname{diag}(-1,1, \ldots, 1)$
$\vee f: \mathbb{E}_{1}^{n+1} \rightarrow \mathbb{E}_{1}^{n+1}:$ a bijection preserving the Minkowski inner $レ$ product

$$
\Rightarrow f(x)=A x(A \in \mathrm{O}(n, 1))
$$

- $A \in \mathrm{O}(n, 1) \Rightarrow \operatorname{det} A= \pm 1$.
- $A=\left(a_{i j}\right) \in \mathrm{O}(n, 1) \Rightarrow\left|a_{00}\right| \geqq 1$


## Exercise 3-2

## Problem (Ex. 3-1)

Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
f: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in \mathbb{L}^{3}=\mathbb{E}_{1}^{3}
$$

and take an orthonormal basis $\left[e_{1}(u, v), e_{2}(u, v)\right]$ of $T_{\boldsymbol{x}} H^{3}(-1)$, where $\boldsymbol{x}=\boldsymbol{f}(u, v)$.

- Verify that, for each $(u, v) \in D,\left[\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ is a basis of $\mathbb{R}^{3}$, where $e_{0}=f$.
- Express the derivatives $\left(\boldsymbol{e}_{j}\right)_{u}$ and $\left(\boldsymbol{e}_{j}\right)_{v}(j=0,1,2)$ as linear combinations of $\left[e_{0}, e_{1}, e_{2}\right]$.

$$
f(0)=H^{2}(-1)
$$

Tompent space of $\mathrm{H}^{2}(-1)$ at
(Poimerić model)
$x=f(u, v)$ is sponied by fa, $f_{0}\langle i, f$
$\Rightarrow \cdot\left\langle t_{u}, t_{v}\right\rangle=\frac{4}{\left(1-v^{2}-v^{2}\right)^{2}}=\left\langle f_{v}, t_{v}\right\rangle$

- $\left.4 t_{n}, f_{v}\right\rangle=$
- $\left\langle f_{u}, t\right\rangle=\frac{1}{2}\langle f, t\rangle_{u}=\frac{1}{2}(-1)_{u}=0$ $\left\langle\mathrm{fv}_{\mathrm{c}}, f\right\rangle=0$
$\Rightarrow\left[\mathbb{P}_{0}^{(n \cdot v)} \mathbb{C}_{1}, \mathbb{C}_{2}\right]$ : orthonorval frame \& $\frac{1-a^{2}-a^{2}}{2}+\frac{1-n^{2}-v^{2}}{2}$ to on $\mathbb{T}_{1}^{3}$

