($\not \approx$ Problems on Latione Notes \uparrow \Rightarrow revised vorsion will be undowad

Advanced Topics in Geometry E1 (MTH.B505)

Riemannian connection for submanifolds

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

$$
2023 / 05 / 16
$$

> Rismaviou competrinn io snimanibuts - geodlases

Review

- M : an n-dimensional manifold.

$\left(x: p \mapsto x_{p}\right)$

- $T_{p} M$: the tangent space of M at (Q)
$\triangleright \mathcal{F}(M)$: the algebra of C^{∞}-functions on M.
$\wedge \mathfrak{X}(M): \mathcal{F}(M)$-module of C^{∞}-vector fields on M.

Definition

A tangent vector of M at p is an \mathbb{R}-linear $\operatorname{map}\left(X_{p}\right) \mathcal{F}(M) \rightarrow \mathbb{R}$ satisfying the "Leibniz rule" dicectemal

$$
\left(X_{p}\right)(f g)=f(p) X_{p}(g)+g(p) X_{p}(f) \text {. derivative }
$$

$$
X \in \mathfrak{X}(M), f \in \mathcal{F}(M) \Rightarrow X f
$$

Lie bracketan (x, $\left.-x^{n}\right)$: a lncel coordinato sys

$$
\begin{aligned}
& \text { N } \begin{aligned}
&=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}, Y=\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}} \Rightarrow X f=\sum_{l=1}^{n} X^{i} \frac{\partial f}{\partial x^{l}}, \\
& Y(X f)=\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}}\left(\sum_{l=1}^{n} X^{l} \frac{\partial f}{\partial x^{l}}\right) \\
&=\sum_{j, l=1}^{n} Y^{j}\left(X^{l} \frac{\partial^{2} f}{\partial x^{j} \partial x^{l}}+\frac{\partial X^{l}}{\partial x^{j}} \frac{\partial f}{\partial x^{l}}\right) \\
&\left(\frac{\partial}{\partial x^{i}}\right) f=\frac{\partial f}{\partial x^{i}}(p)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& X=\sum_{i} X^{i} \frac{\partial}{\partial x^{i}} \Rightarrow X f=\sum X^{i} \frac{\partial f}{\partial x^{i}} \in f(\omega) \\
& \text { fumtioms in }\left(x^{1}-x^{\prime}\right) \text { nt a torgent } \\
& Y=\sum_{i} Y_{i} \frac{\partial}{\partial x} i \quad f \longmapsto Y(x-f)^{\text {vectw }} \\
& \Rightarrow Y(X f)=\sum_{i, j} Y^{i} \frac{\partial}{\partial x^{i}}\left(X^{i} \frac{\partial f}{\partial x_{i}}\right) \\
& =\sum_{i=j}\left(y^{i} \times\left(\frac{\partial^{i} f}{\partial x^{i} \partial x i v}\right)+y^{i} \frac{\partial x^{i}}{\partial x^{i}} \frac{d}{\partial x^{2}}\right)
\end{aligned}
$$

Lie bracket

$$
\begin{aligned}
& X, Y \in \mathfrak{X}(M) . \\
& X=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}, \quad Y=\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}} \Rightarrow \quad X \frac{X(Y f)-Y(X f)}{\partial x^{j}}=\sum_{j, l=1}^{\partial y, ~}
\end{aligned}
$$

Definition $[X, Y]$

The Lie bracket of X and Y is defined as

$$
[X, Y] f:=X(Y f)-Y(X f) \quad(f \in \mathcal{F}(M)) .
$$

Lemma
For $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$, it hold that

- $[X, Y]=-[Y, X]$,
- $[f X, Y]=f[X, Y]-(Y f) X,[X, f Y]=f[X, Y]+(X f) Y$,
- $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y] . \mid$ Jacobr's identerly

$$
\left[\frac{\partial}{\partial x^{i}}-\frac{\partial}{\partial z^{i}}\right]=0
$$

communtativity of partial defferentiation

The Lie bracket as an integrability condition

Fact

- $\left[X_{1}, \ldots, X_{n}\right]:$ an n-tuple of vector fields on $U \subset M$
- $\left\{X_{1}, \ldots, X_{n}\right\}$ are linearly independent on each point $\stackrel{\rightharpoonup}{p}$. \Rightarrow
- Ja local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ around p with
if and only if $\left[X_{j}, X_{k}\right]=0$ for all $j, k=1, \ldots, n$.
a special cases of Erebenis's thun (proved in 2Q)

The canonical connection on \mathbb{R}^{n}

$X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$ can be considered $X=\left(X^{1}, \ldots, X^{n}\right)^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Definition

For $\boldsymbol{v} \in T_{p} \mathbb{R}^{n}$,

direction?

\downarrow derivative

$$
\left.D_{v} X:=\frac{\left(d X^{1}(v), \ldots, d X^{n}(v)\right.}{\left(v X^{1}\right.}, \cdots X^{n}\right) \tau
$$

Definition

The canonical connection \mathbb{R}^{n} is

$$
D: \mathfrak{X}\left(\mathbb{R}^{n}\right) \times \mathfrak{X}\left(\mathbb{R}^{n}\right) \ni\left(\underset{\sim}{X},{\underset{\bullet}{Y}}^{Y}\right) \mapsto \underset{\underline{D_{X} Y}}{ } \in \mathfrak{X}(M) .
$$

Lemma

$$
\underbrace{D_{X} Y}_{\text {Riemannian connection for summa, in ids }}-D_{Y} X=(X, Y Y
$$

Position vector field

$X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$ can be considered $X=\left(X^{1}, \ldots, X^{n}\right)^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Example

(x.) the position vector field on $\mathbb{R}^{n} \Rightarrow$

$$
D_{X} x=X
$$

$$
\begin{aligned}
& \text { for } x \in x\left(\mathbb{R}^{n}\right) . \\
& D_{x} x=\frac{d}{d+t_{t \sim 0}} x(p+t X) \\
&=X
\end{aligned}
$$

Tangent space of a submanifold of \mathbb{E}^{N}

$M \subset \mathbb{E}^{n+r}$ an n-dimensional submanifold of the Euclidean space.
$\left(x_{x} \mathbb{E}^{n+1}=\mathbb{E}^{n+1}=T_{x} M \oplus N_{x} \quad N_{x}=\left(T_{x} M\right)^{\perp}\right.$
$N_{x}=(T, M)^{\perp}$ tangention normal spence of $E^{\text {NV }}$
$N x=(x M)$
$=\left\{v \in \mathbb{E}^{w r}\right.$
I $\left.v=[v]^{1}+[v]^{N}\right]$ dives $\operatorname{sim}_{m} v \in T_{x} \mathbb{B}^{n+r}$

Induced connection
$M \subset \mathbb{E}^{n+r}:$ an n-dimensional submanifold of the Euclidean space with induced metric.

indued comection on $(M,\langle\rangle$, covariant derivative
∇ is an "intrinsic" notion

Geodesic

$M \subset \mathbb{E}^{n+r}:$ an n-dimensional submanifold of the Euclidean space with induced metric.
∇ : the induced connection.
$\gamma(t)$: a curve on M.
"straight lins"
Definition
γ is a geodesic $\Leftarrow \nabla_{\dot{\gamma} \dot{\gamma}=0}$.

Example: the unit sphere $\quad T_{K} S^{\wedge}(t)=x^{\perp}$
\qquad

$$
\begin{aligned}
& \gamma(t): \text { a ave in } S^{n}(t) \\
& \nabla_{\dot{\gamma}} \dot{\gamma}=[\ddot{\gamma}]^{\top}=\ddot{\gamma}-\langle\dot{\gamma}, \dot{\theta} \geq \dot{Q} \\
& x \in S^{n}(i),{ }^{x^{\perp} v} v \in T_{x} S^{n}(l),|w| \\
& \text { set } y(t)=(\cos t) x+(\cot t) v \in s^{n}(t) \\
& \hat{f}(t)=-\gamma(t) \quad \nabla_{i} \gamma=0
\end{aligned}
$$

$Y(t)=$ ent $x+$ st $v: a$ quodare

Exercise 4-1

Set

$$
H^{2}(-1)=\left\{\boldsymbol{x}=\left(x^{0}, x^{1}, x^{2}\right)^{T} \in \mathbb{E}_{1}^{3} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x_{0}>0\right\} .
$$

Problem (Ex. 4-1)

Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
f: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in H^{3}(-1)
$$

and take an orthonormal frame $\left[e_{0}(u, v), e_{1}(u, v), e_{2}(u, v)\right]$.

- Compute the Lie bracket $\left[q_{1}, e_{2}\right]$ as a linericombinatig off e_{0}, e_{1} and e_{2}. Conowhed Conmisis of is
- Compute $D \boldsymbol{e}_{i} \boldsymbol{e}_{j}$ for $i, j=1,2$.

Exercise 4-2 Geodesics in $\left.H^{3} t-1\right)$

Set

$$
H^{2}(-1)=\left\{\boldsymbol{x}=\left(x^{0}, x^{1}, x^{2}\right)^{T} \in \mathbb{E}_{1}^{3}\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x_{0}>0\right\} .
$$

Problem (Ex. 4-2)

\checkmark For each $x \in H^{2}(-1)$, show that α^{L}

$$
\mathbb{E}_{1}^{3}=T_{x} H^{2}(-1
$$

- Lex $x H^{2}(-1)$ and take a unit vector $v \in T_{x} H^{2}(-1)=x^{\perp}$. Then show that
goo on y
is a curve on $H^{2}(-1)$ satisfying $[\ddot{\gamma}(t)]^{\mathrm{T}}=$ where $[*]^{\mathrm{T}}$ denotes the $T_{\gamma(t)} H^{2}(-1)$-components of the decomposition () with

