Advanced Topics in Geometry E1 (MTH.B505)

Riemannian connection for submanifolds

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology
2023/05/16

Review

- M : an n-dimensional manifold.
- $T_{p} M$: the tangent space of M at p.
- $\mathcal{F}(M)$: the algebra of C^{∞}-functions on M.
- $\mathfrak{X}(M): \mathcal{F}(M)$-module of C^{∞}-vector fields on M.

Definition

A tangent vector of M at p is an \mathbb{R}-linear map $X_{p}: \mathcal{F}(M) \rightarrow \mathbb{R}$ satisfying the "Leibniz rule"

$$
\left(X_{p}\right)(f g)=f(p) X_{p}(g)+g(p) X_{p}(f)
$$

$X \in \mathfrak{X}(M), f \in \mathcal{F}(M) \Rightarrow X f \in \mathfrak{X}(M)$.

Lie bracket

$$
\begin{aligned}
X & =\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}, \quad Y=\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}} \quad \Rightarrow \quad X f=\sum_{l=1}^{n} X^{l} \frac{\partial f}{\partial x^{l}}, \\
Y(X f) & =\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}}\left(\sum_{l=1}^{n} X^{l} \frac{\partial f}{\partial x^{l}}\right) \\
& =\sum_{j, l=1}^{n} Y^{j}\left(X^{l} \frac{\partial^{2} f}{\partial x^{j} \partial x^{l}}+\frac{\partial X^{l}}{\partial x^{j}} \frac{\partial f}{\partial x^{l}}\right)
\end{aligned}
$$

Lie bracket

$X, Y \in \mathfrak{X}(M)$.
$X=\sum_{j=1}^{n} X^{j} \frac{\partial}{\partial x^{j}}, \quad Y=\sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}} \quad \Rightarrow \quad X(Y f)-Y(X f)=\sum_{j, l=1}^{n}\left(X^{j}\right)$

Definition

The Lie bracket of X and Y is defined as

$$
[X, Y] f:=X(Y f)-Y(X f) \quad(f \in \mathcal{F}(M)) .
$$

Lie bracket

Lemma

For $X, Y, Z \in \mathfrak{X}(M)$ and $f \in \mathcal{F}(M)$, it hold that

- $[X, Y]=-[Y, X]$,
- $[f X, Y]=f[X, Y]-(Y f) X,[X, f Y]=f[X, Y]+(X f) Y$,
- $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]$.

The Lie bracket as an integrability condition

Fact

- $\left[X_{1}, \ldots, X_{n}\right]$: an n-tuple of vector fields on $U \subset M$
- $\left\{X_{1}, \ldots, X_{n}\right\}$ are linearly independent on each point p.
\Rightarrow
- \exists a local coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ around p with

$$
X_{j}=\frac{\partial}{/} \partial x^{j} \quad(j=1, \ldots, n)
$$

if and only if $\left[X_{j}, X_{k}\right]=\mathbf{0}$ for all $j, k=1, \ldots, n$.

The canonical connection on \mathbb{R}^{n}

$X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$ can be considered $X=\left(X^{1}, \ldots, X^{n}\right)^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Definition
For $\boldsymbol{v} \in T_{p} \mathbb{R}^{n}$,

$$
D_{\boldsymbol{v}} X:=\left(d X^{1}(\boldsymbol{v}), \ldots, d X^{n}(\boldsymbol{v})^{T} .\right.
$$

Definition
The canonical connection of \mathbb{R}^{n} is

$$
D: \mathfrak{X}\left(\mathbb{R}^{n}\right) \times \mathfrak{X}\left(\mathbb{R}^{n}\right) \ni(X, Y): \rightarrow D_{X} Y \in \mathfrak{X}(M) .
$$

Lemma

$$
D_{X} Y-D_{Y} X=[X, Y]
$$

Position vector field

$X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$ can be considered $X=\left(X^{1}, \ldots, X^{n}\right)^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Example

\boldsymbol{x} : the position vector field on $\mathbb{R}^{n} \Rightarrow$

$$
D_{X} \boldsymbol{x}=X
$$

for $X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$.

Tangent space of a submanifold of \mathbb{E}^{N}

$M \subset \mathbb{E}^{n+r}:$ an n-dimensional submanifold of the Euclidean space.

$$
\begin{aligned}
T_{\boldsymbol{x}} \mathbb{E}^{n+r} & =\mathbb{E}^{n+r}=T_{\boldsymbol{x}} M \oplus N_{\boldsymbol{x}} & & N_{\boldsymbol{x}}=\left(T_{\boldsymbol{x}} M\right)^{\perp} \\
\boldsymbol{v} & =[\boldsymbol{v}]^{\mathrm{T}}+[\boldsymbol{v}]^{\mathrm{N}} & & \boldsymbol{v} \in T_{\boldsymbol{x}} \mathbb{E}^{n+r}
\end{aligned}
$$

Induced connection

$M \subset \mathbb{E}^{n+r}:$ an n-dimensional submanifold of the Euclidean space with induced metric.

Definition

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto \nabla_{X} Y:=\left[D_{X} Y\right]^{\mathrm{T}} \in \mathfrak{X}(M)
$$

Geodesic

$M \subset \mathbb{E}^{n+r}$: an n-dimensional submanifold of the Euclidean space with induced metric.
∇ : the induced connection.
$\gamma(t)$: a curve on M.

Definition

γ is a geodesic $\Leftrightarrow \nabla_{\dot{\gamma}} \dot{\gamma}=\mathbf{0}$.

Example: the unit sphere

$$
\begin{aligned}
& S^{n}(1):=\left\{\boldsymbol{x} \in \mathbb{E}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1\right\} \\
& \quad \mathbb{E}^{n+1}=T_{\boldsymbol{x}} \mathbb{E}^{n+1}=T_{\boldsymbol{x}} S^{n}(1) \oplus \mathbb{R} \boldsymbol{x} .
\end{aligned}
$$

Exercise 4-1

Set

$$
H^{2}(-1)=\left\{\boldsymbol{x}=\left(x^{0}, x^{1}, x^{2}\right)^{T} \in \mathbb{E}_{1}^{3} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x_{0}>0\right\}
$$

Problem (Ex. 4-1)

Let $D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\}$, and set

$$
\boldsymbol{f}: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in H^{3}(-1)
$$

and take an orthonormal frame $\left[\boldsymbol{e}_{0}(u, v), \boldsymbol{e}_{1}(u, v), \boldsymbol{e}_{2}(u, v)\right]$.

- Compute the Lie bracket $\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right]$ as a liner combination of $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}$ and \boldsymbol{e}_{2}.
- Compute $D \boldsymbol{e}_{i} \boldsymbol{e}_{j}$ for $i, j=1,2$.

Exercise 4-2

Set

$$
H^{2}(-1)=\left\{\boldsymbol{x}=\left(x^{0}, x^{1}, x^{2}\right)^{T} \in \mathbb{E}_{1}^{3} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x_{0}>0\right\}
$$

Problem (Ex. 4-2)

- For each $\boldsymbol{x} \in H^{2}(-1)$, show that

$$
\begin{equation*}
\mathbb{E}_{1}^{3}=T_{\boldsymbol{x}} H^{2}(-1) \oplus \mathbb{R} \boldsymbol{x} \tag{*}
\end{equation*}
$$

- Let $\boldsymbol{x} \in H^{2}(-1)$ and take a unit vector $\boldsymbol{v} \in T_{\boldsymbol{x}} H^{2}(-1)=\boldsymbol{x}^{\perp}$. Then show that

$$
\gamma(t):=(\cosh t) \boldsymbol{x}+(\sinh t) \boldsymbol{v}
$$

is a curve on $H^{2}(-1)$ satisfying $[\ddot{\gamma}(t)]^{\mathrm{T}}=\mathbf{0}$, where $[*]^{\mathrm{T}}$ denotes the $T_{\gamma(t)} H^{2}(-1)$-components of the decomposition ($*$) with $\boldsymbol{x}=\gamma(t)$.

