- $M=a$ (psendo) Riemannian mamifold with mutric $g(=\langle\rangle$,
Advanced Topics in Geometry E1 (MTH.B505)
Riemannian connection

Kotaro Yamada
kotaro@math.titech.ac.jp
http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Riemannian connection for an abstract drem. mantud (nit rue submfor
Lemma (Lemma 5.1) of E^{n}).
There exists the unique bilinear map

$$
\begin{aligned}
& \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \longmapsto \nabla_{X} Y \in \mathfrak{X}(M) \\
& \text { nabla } G(M)=\{\text { smath functios }\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ADAC }\} \\
& \text { for } X, Y, Z \in \mathfrak{X}(M) \text {. Lebnitz rule for }\langle,\rangle \\
& \text { torsion free" cordition } \\
& \nabla \text { : the Riemanian convectorn } \\
& \text { the Levi-Cicita }
\end{aligned}
$$

Lemma 5.1
If ${ }^{3} \mathrm{~V}$, $\langle\overline{\mathrm{V}} \times \mathrm{Y} . Z\rangle$

$$
\begin{aligned}
\left\langle V_{X} Y Z\right\rangle & =X\langle Y, Z\rangle-\left\langle Y, V_{x} Z\right\rangle \\
& =X\langle Y, Z\rangle-\left\langle Y, V_{Z} X+[X, Z]\right\rangle
\end{aligned}
$$

$$
=X\langle Y, z\rangle-\left\langle\hat{i} \nabla_{2} X\right\rangle-\langle\varphi,[x, z]\rangle
$$

$$
=X\langle Y, Z\rangle-Z\langle Y X\rangle+\left\langle\nabla_{Z} Y, X\right\rangle-\langle Y,[X, Z\rangle)
$$

$$
\left.=x\left\langle v_{1}, z\right\rangle-\& c_{1}^{v} x\right\rangle+\left\langle\left[\frac{1}{z}\right)+[z, 1,]_{1}(x)\right\rangle
$$

$\Gamma Y\langle z, X\rangle-\langle z(\langle 4 X\rangle+\langle[z, Y], X\rangle$ $-\dot{y}(x+0))$
$\nabla_{x} Y=\bar{\nabla}_{0}, a$ vector ifold satrififing

$$
\begin{equation*}
\langle\vec{x} \varphi, z\rangle=[C(\otimes, Q z)] \text {, } \tag{1}
\end{equation*}
$$

- unigunes follows becance of ron deqeneracy.
existince:

$$
\binom{\varphi: V \rightarrow \mathbb{R}: \text { liveor, }\langle.\rangle \text { non-deguanate }}{\rightarrow \text { Il } V \in V \text { s.t. } \varphi(x)=\langle v . u\rangle \text {. } V}
$$

Riemannian (Levi-Civita) connection

Definition

The map ∇ in Lemma 5.1 is called the Riemannian connection or the Levi-Civita connection.

Whed is comection? (many wreanif)

- Limioar conmection m tomgent bemalle TM
- $\nabla: ¥(\mu) \times \mathscr{F}(M) \rightarrow \mathcal{H}(\mu)$ bilinear
satisifiy $(\rightarrow$ lemue en woit page)

Riemannian (Levi-Civita) connection
" $\exists_{\text {many }}$ livear convective on TM)"

- gaume theny" is a

Find it geomsiy on the spac if comectims.

Covariant Derivative

$$
\left[\begin{array}{ll}
e_{2}-e_{n}
\end{array}\right]
$$

Corollary

Assume (1) $\in \mathfrak{X}(M)$ satisfy $X_{p}=Y_{p}$ at a point $p \in M$. Then

$$
\left(\nabla_{X} Z\right)=\left(\nabla_{Y} Z\right)
$$

holds for each $Z \in \mathfrak{X}(M)$.

$$
x=2 x^{i} \cdot e_{i}
$$

$$
Y=\Sigma \varphi^{i} \theta_{i}
$$

Definition at $\rho \quad \nabla_{x} Z=\sum X^{i}\left(V_{Q} Z\right)_{p}=\sum$!
For $x \in T_{p} M$ be a tangent vector at $p \in M$ and a vector field $Y \in \mathfrak{X}(M)$,

$$
\nabla_{x} \bar{Y}:=\left(\nabla_{X} Y\right)_{p} \in T_{p} M
$$

is called the covariant derivative of Y with respect to the direction \boldsymbol{x}, where $X \in \mathfrak{X}(M)$ is a vector field satisfying $\left(X_{p}\right)=$.
($\operatorname{H}_{3} z_{2}(\sqrt{2} / A)$

$$
\binom{\left.\mathbb{F}_{r}^{n+r},\langle.\rangle\right)\langle x, y\rangle=\pi^{T}\left(\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right) y}{0} y
$$

Indepengt of sign of $C>$

$$
\begin{aligned}
& \left(X: \mathbb{E}_{V}^{n+r} \longrightarrow \mathbb{E}_{r}^{m+r}\right)
\end{aligned}
$$

Then D is heri-Cinita convection

$$
\left.m \mathbb{E}_{r}^{n+r} \quad\left(L_{\text {emwa }} 4.6\right) \quad \begin{array}{c}
\text { commical } \\
\text { connectime }
\end{array}\right)
$$

Submanifolds

Lemma

Let $M \subset \mathbb{E}_{r}^{n+r}$ be a submanifold of the pseudo Euclidean space \mathbb{E}_{r}^{n+r}. If the restriction of the inner product \langle,$\rangle of \mathbb{E}_{r}^{n+r}$ on $T_{p} M$ is non-degenerate, the direct sum decomposition

$$
\mathbb{E}_{r}^{n+r}=T_{p} M \oplus\left(T_{p} M\right)^{\perp}
$$

that is, for each vector $\boldsymbol{v} \in \mathbb{E}_{r}^{n+r}=T_{p} \mathbb{E}_{r}^{n+r}$, there exists a unique decomposition

$$
\boldsymbol{v}=[\boldsymbol{v}]^{\mathrm{T}}+[\boldsymbol{v}]^{\mathrm{N}}, \quad[\boldsymbol{v}]^{\mathrm{T}} \in T_{p} M, \quad[\boldsymbol{v}]^{\mathrm{N}} \in\left(T_{p} M\right)^{\perp}
$$

$$
\begin{aligned}
& \begin{array}{l}
M C \mathbb{E}^{n} \mathbb{E}^{n}-T_{p} \mathbb{E}^{n}=\left[\begin{array}{l}
{\left[\vec{T} M \oplus(T, M)^{\perp}\right.} \\
{[v]^{T}+[v]^{N}}
\end{array}\right.
\end{array} \\
& \nabla_{X} Y:=\left[D_{X} Y\right]^{\top}
\end{aligned}
$$

induced convectin
(TRM) the levi-Civita comectrim $m\left(M,\left.\langle\rangle\right|_{T M},\right) \quad \leftrightarrow \leqslant(H) X, Y, Z \in *(L)$$\left.\left[D_{x} Y-D_{r} X\right]=[X X Y]\right]^{\top}=[X, Y]$ $\nabla_{x}^{n} y-\nabla_{y} X \quad y^{\text {toment }}$ - $\left.x\left\langle Y_{.} Z\right\rangle=\left\langle D_{Y} Y, Z_{z}^{\prime}\right\rangle+2 Y, D_{z} z\right\rangle$

$$
\begin{aligned}
& M C E_{r}^{\operatorname{Lor} r} \quad \text { Assumption: }\left.\langle,\rangle\right|_{T M} / \operatorname{mondog} ; \\
& \Rightarrow \quad \mathbb{E}_{r}^{n+r}=T_{p} M \oplus\left(T_{p} M\right)^{1} \\
& \text { at } p \in M \\
& \downarrow \quad v=[u]^{\top}+[v]^{N} \\
& \Rightarrow\left[D_{k}{ }^{\prime}\right]^{T}: \text { the Leri-Civita conueton }
\end{aligned}
$$

Exenp $\mathbb{E}_{1}^{8} \supset M=\{(x, u, v) ; u, v \in \mathbb{R}\}<x_{0}$

Riemannian connection of submanifolds

Theorem

Let $M \subset \mathbb{E}_{r}^{n+r}$ be a submanifold such that the restriction of the inner product \langle,$\rangle to T M$ is non-degenerate. We set for X, $Y \in \mathfrak{X}(M)$ by

$$
\nabla_{X} Y:=\left[D_{X} Y\right]^{\mathrm{T}} .
$$

Then ∇ is the Levi-Civita connection of M with respect to the induced metric $\left.\langle\rangle\right|_{T M$,$} .$

Exercise

Set

$$
H^{2}(-1)=\left\{\boldsymbol{x}=\left(x^{0}, x^{1}, x^{2}\right)^{T} \in \mathbb{E}_{1}^{3} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x^{0}>0\right\}
$$

and take a parametrization

$$
\begin{aligned}
& \qquad f: D \ni(u, v) \mapsto \frac{1}{1-u^{2}-v^{2}}\left(1+u^{2}+v^{2}, 2 u, 2 v\right) \in H^{2}(-1) \\
& \text { of } H^{2}(-1) \text {, where } D:=\left\{(u, v) \in \mathbb{R}^{2} ; u^{2}+v^{2}<1\right\} \text {. }
\end{aligned}
$$

Exercise 5-1

Problem (Ex. 5-1)

Let $\left[e_{0}(u, v), e_{1}(u, v), e_{2}(u, v)\right]$ be an orthonormal frame as

$$
e_{0}:=f, \quad e_{1}:=\frac{f_{u}}{\left|f_{u}\right|}, \quad e_{2}:=\frac{f_{v}}{\left|f_{v}\right|} .
$$

For the induced connection ∇ of $H^{2}(-1)$,

- Compute $\left\langle\nabla e_{i} e_{j}, e_{k}\right\rangle$ for i, j and k run over $\{1,2\}$.
- Compute $\nabla_{e_{1} \nabla_{e_{2}} e_{2}-\nabla_{e_{2}} \nabla_{e_{1}} e_{2}-\nabla_{\left(e_{1} e_{0} e_{2} e_{2}\right.} .}^{\text {. }}$

Exercise 5-2

Problem (Ex. 5-2)

Let $\widetilde{D}:=(0, \infty) \times(-\pi, \pi)$,

$$
\widetilde{f}: \widetilde{D} \ni(r, t) \mapsto(\cosh r, \sinh r \cos t, \sinh r \sin t) \in H^{2}(-1)
$$

and set

$$
\boldsymbol{v}_{0}=\widetilde{\boldsymbol{f}}, \quad \boldsymbol{v}_{1}=\widetilde{\boldsymbol{f}}_{r}, \quad \boldsymbol{v}_{2}=\frac{1}{\sinh r} \widetilde{\boldsymbol{f}}_{t}
$$

- Find a parameter change $\varphi:(r, t) \mapsto(u, v)=(u(r, t), v(r, t))$.
- Find a 2×2-matrix valued function $\Theta=\Theta(r, t)$ satisfying $\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right) \Theta$.

