Advanced Topics in Geometry E1 (MTH.B505)

Geodesics

Kotaro Yamada kotaro@math.titech.ac.jp

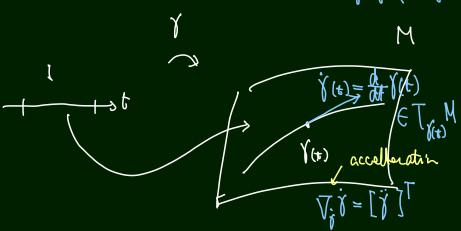
o://www.math_titech_ac_in/~kotaro/class/2023/geom-e1

Tokyo Institute of Technology

2023/05/30

Set up

- \blacktriangleright (M,g): a(pseudo)Riemannian manifold
- ▶ V: the Levi-Civita connection (determined uniquely from g)



Pregeodesics and Geodesics

Geoderic (那似物) Pregeoderic (準期心的)

Definition

A curve $\gamma=\gamma(t)$ is called a <u>pregeodesic</u> if $\nabla_{\dot{\gamma}}\dot{\gamma}$ is parallel to $\dot{\gamma}$, that is, there exists a smooth function $\varphi(t)$ in t such that $\nabla_{\dot{\gamma}}\dot{\gamma}=\varphi\dot{\gamma}$.

Definition

A curve γ is called a geodesic if $\nabla_{\dot{\gamma}}\dot{\dot{\gamma}}=0$ holds identically. Goodusic \Longrightarrow frequent,

l emma

If γ is a geodesic, then $\langle \dot{\gamma}, \dot{\gamma} \rangle$ is constant. (in t) $\frac{d}{dt} \langle \dot{\gamma}, \dot{\gamma} \rangle = \langle \mathcal{V}_{i}, \dot{\gamma} \rangle + \langle \dot{\gamma}, \dot{\gamma} \rangle = 0$ derivative $\dot{\omega} \cdot \dot{v} \cdot \dot{$

Pregeodesics and Geodesics

Definition

A curve $\gamma=\gamma(t)$ is called a <u>pregeodesic</u> if $\nabla_{\dot{\gamma}}\dot{\gamma}$ is parallel to $\dot{\gamma}$, that is, there exists a smooth function $\varphi(t)$ in t such that $\nabla_{\dot{\gamma}}\dot{\gamma}=\varphi\dot{\gamma}$.

Definition

A curve γ is called a geodesic if $\nabla_{\dot{\gamma}}\dot{\gamma}=\mathbf{0}$ holds identically.

Lemma

If γ is a geodesic, then $\langle \dot{\gamma}, \dot{\gamma} \rangle$ is constant.

Pregeodesics and Geodesics

Lemma

bre

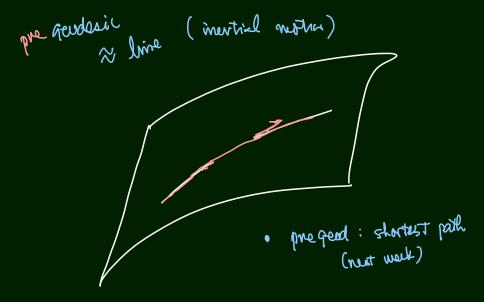
Let $\gamma\colon I\ni t\mapsto \gamma(t)\in M$ be a geodesic, where $I\subset\mathbb{R}$ is an interval. Then there exists a parameter change $\underline{t=t(s)}$ such that $\tilde{\gamma}(s)=\gamma(t(s))$ is a geodesic.

$$\nabla_{x}\dot{y} = \varphi\dot{y} \qquad S = S(t) = \int_{t_{0}}^{t} (\exp \int_{t_{0}}^{u} \varphi(z)dz)du$$

$$\frac{dS}{dt} > 0 \implies t = t(S) \qquad t_{0} \in I$$

$$\gamma(s) = \gamma(t(\Omega)) : \text{ the desired curve}$$

$$(\tau(s) = \sigma(s)) = \sigma(s)$$



Existence and Uniqueness .

V; $\dot{\gamma} = 0$ = (atm - xtm) ordinary dett. eq

Fact

For each $p\in M$ and $m{v}\in T_pM$, there exists unique geodesic wdw $\gamma_{p,m{v}}\colon I o M$, where I is an interval including 0 such that $\gamma(0)=p$ and $\dot{\gamma}(0)=m{v}$.

Proposition

$$\gamma_{m{p},km{v}}(t) = \gamma_{m{p},m{v}}(kt).$$

- · Both sides are quodericy
- · Both sides one P at
 - · Ot 1p, kor (0) = 10.

/p___

1.0.

 $\frac{d}{du} \gamma_{p.v} (u) |_{u=0} = k$

Existence and Uniqueness

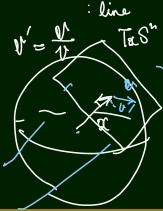
$$\mathbb{E}_{\nu}: \mathcal{L}_{\dot{\nu}} \dot{\lambda} = \dot{\lambda}$$

Example

$$S^n:=\left\{oldsymbol{x}\in\mathbb{E}^{n+1}\,;\,raket{x,x}=1
ight\} \hspace{1cm} egin{array}{c} oldsymbol{\zeta(t)} \ oldsymbol{z} oldsymbol{\zeta(t)} \end{array}$$

$$\alpha \in \mathcal{S}_{x} \quad \beta = \alpha$$

$$\alpha \in \mathcal{S}_{x} \quad |\alpha| = 0$$



$$\frac{1}{1} \cdot \frac{1}{1} = \frac{1}{1} \cdot \frac{1}{1} = \frac{1$$

i.e. $V(t) = V_{M,N}(t)$ [quest civile $V(t) = V_{M,N}(t)$]

Completeness

Definition

A pseudo Riemannian manifold (M,g) is said to be complete if all geodesics are defined on whole on \mathbb{R} .

te R

$$Y_{a,v}(t) = x + t \cdot x$$
 complete
 $Y_{a,v}(t) = \{x \in V \} x \in x \setminus y \in y \}$
 $V = \{y\}$

$$\mathcal{K} = (-\Gamma 0)$$

$$\mathbb{E}_{5} / \{(0.0)\}$$

$$\mathbb{E}_{7} / \{(0.0)\}$$

$$V = (1.0)$$

$$V = (1.0)$$

$$V = (-1.0)$$

$$V = (-1.0)$$

$$V = (-1.0)$$

$$v = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} t \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} t - 1 \\ 0 \end{pmatrix} - \infty < t < 1$$
 in complete

The prendosphere shreoct, solved Beltram's foods , r-toly) in coupleto Hilbert's theorem \$ complete sufac with K=-1

Exercise 6-1

Problem (Ex. 6-1)

Let

$$f(r,t) := (\cosh r, \sinh r \cos t, \sinh r \sin t)^T \in H^2(-1)$$

be a parametrization in $H^2(-1)$. Show that $\gamma(r): r \mapsto f(r,t) \in H^2(-1)$ is a geodesic for each fixed value t.

Exercise 6-2

de Sitter plane

Problem (Ex. 6-2)

$$S_1^2 := \{oldsymbol{x} \in \mathbb{E}_1^3 \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = 1 \} \ T_{oldsymbol{x}} S_1^3 = oldsymbol{x}^\perp \ oldsymbol{x} \in S_1^2 ext{, } oldsymbol{v} \in T_{oldsymbol{x}} S_1^2$$

causality

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := egin{cases} (\cosh vt) \boldsymbol{x} + (\sinh vt) \boldsymbol{v}' & & \textit{if } \langle \boldsymbol{v}, \boldsymbol{v} \rangle < 0, \\ \boldsymbol{x} + t \boldsymbol{v} & & \textit{if } \langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0, \\ (\cos vt) \boldsymbol{x} + (\sin vt) \boldsymbol{v}' & & \textit{if } \langle \boldsymbol{v}, \boldsymbol{v} \rangle > 0, \end{cases}$$

where $v:=|\langle \pmb{v},\pmb{v}\rangle|^{1/2}$ and $\pmb{v'}:=\pmb{v}/v$. Show that $\gamma:=\gamma_{\pmb{x},\pmb{v}}$ is a geodesic on $S^{\pmb{\gamma}}$ with $\gamma(0)=\pmb{x}$ and $\dot{\gamma}(0)=\pmb{v}$.

2

complete Lora

Lorentian Mandel