Advanced Topics in Geometry E1 (MTH.B505)

Geodesics

Kotaro Yamada kotaro@math.titech.ac.jp

http://www.math.titech.ac.jp/~kotaro/class/2023/geom-e1/

Tokyo Institute of Technology

2023/05/30

Set up

ullet (M,g): a pseudo Riemannian manifold

ullet ∇ : the Levi-Civita connection

Pregeodesics and Geodesics

Definition

A curve $\gamma=\gamma(t)$ is called a <u>pregeodesic</u> if $\nabla_{\dot{\gamma}}\dot{\gamma}$ is parallel to $\dot{\gamma}$, that is, there exists a smooth function $\varphi(t)$ in t such that $\nabla_{\dot{\gamma}}\dot{\gamma}=\varphi\dot{\gamma}$.

Definition

A curve γ is called a geodesic if $\nabla_{\dot{\gamma}}\dot{\gamma}=0$ holds identically.

Lemma

If γ is a geodesic, then $\langle \dot{\gamma}, \dot{\gamma} \rangle$ is constant.

Pregeodesics and Geodesics

Definition

A curve $\gamma=\gamma(t)$ is called a <u>pregeodesic</u> if $\nabla_{\dot{\gamma}}\dot{\gamma}$ is parallel to $\dot{\gamma}$, that is, there exists a smooth function $\varphi(t)$ in t such that $\nabla_{\dot{\gamma}}\dot{\gamma}=\varphi\dot{\gamma}$.

Definition

A curve γ is called a geodesic if $\nabla_{\dot{\gamma}}\dot{\gamma}=0$ holds identically.

Lemma

If γ is a geodesic, then $\langle \dot{\gamma}, \dot{\gamma} \rangle$ is constant.

Pregeodesics and Geodesics

Lemma

Let $\gamma\colon I\ni t\mapsto \gamma(t)\in M$ be a geodesic, where $I\subset\mathbb{R}$ is an interval. Then there exists a parameter change t=t(s) such that $\tilde{\gamma}(s)=\gamma(t(s))$ is a geodesic.

Existence and Uniqueness

Fact

For each $p \in M$ and $v \in T_pM$, there exists unique geodesic $\gamma_{p,v} \colon I \to M$, where I is an interval including 0 such that $\gamma(0) = p$ and $\dot{\gamma}(0) = v$.

Proposition

$$\gamma_{p,k\boldsymbol{v}}(t) = \gamma_{p,\boldsymbol{v}}(kt).$$

Existence and Uniqueness

Example

$$S^n := \left\{ oldsymbol{x} \in \mathbb{E}^{n+1} \, ; \, \langle oldsymbol{x}, oldsymbol{x}
angle = 1
ight\}$$

Completeness

Definition

A pseudo Riemannian manifold (M,g) is said to be <u>complete</u> if all geodesics are defined on whole on \mathbb{R} .

Exercise 6-1

Problem (Ex. 6-1)

Let

$$f(r,t) := (\cosh r, \sinh r \cos t, \sinh r \sin t)^T \in H^2(-1)$$

be a parametrization in $H^2(-1)$. Show that $\gamma(r)\colon r\mapsto \boldsymbol{f}(r,t)\in H^2(-1)$ is a geodesic for each fixed value t.

Exercise 6-2

Problem (Ex. 6-2)

$$egin{aligned} S_1^2 &:= \{ m{x} \in \mathbb{E}_1^3 \, ; \, \langle m{x}, m{x}
angle = 1 \} \ T_{m{x}} S_1^3 &= m{x}^\perp \ m{x} \in S_1^2, \, m{v} \in T_{m{x}} S_1^2 \end{aligned}$$

$$\gamma_{\boldsymbol{x},\boldsymbol{v}}(t) := \begin{cases} (\cosh vt)\boldsymbol{x} + (\sinh vt)\boldsymbol{v}' & \text{if } \langle \boldsymbol{v},\boldsymbol{v} \rangle < 0, \\ \boldsymbol{x} + t\boldsymbol{v} & \text{if } \langle \boldsymbol{v},\boldsymbol{v} \rangle = 0, \\ (\cos vt)\boldsymbol{x} + (\sin vt)\boldsymbol{v}' & \text{if } \langle \boldsymbol{v},\boldsymbol{v} \rangle > 0, \end{cases}$$

where $v:=|\langle \boldsymbol{v},\boldsymbol{v}\rangle|^{1/2}$ and $\boldsymbol{v'}:=\boldsymbol{v}/v$. Show that $\gamma:=\gamma_{\boldsymbol{x},\boldsymbol{v}}$ is a geodesic on S^3_1 with $\gamma(0)=\boldsymbol{x}$ and $\dot{\gamma}(0)=\boldsymbol{v}$.